31 research outputs found

    An Impulse-C Hardware Accelerator for Packet Classification Based on Fine/Coarse Grain Optimization

    Get PDF
    Current software-based packet classification algorithms exhibit relatively poor performance, prompting many researchers to concentrate on novel frameworks and architectures that employ both hardware and software components. The Packet Classification with Incremental Update (PCIU) algorithm, Ahmed et al. (2010), is a novel and efficient packet classification algorithm with a unique incremental update capability that demonstrated excellent results and was shown to be scalable for many different tasks and clients. While a pure software implementation can generate powerful results on a server machine, an embedded solution may be more desirable for some applications and clients. Embedded, specialized hardware accelerator based solutions are typically much more efficient in speed, cost, and size than solutions that are implemented on general-purpose processor systems. This paper seeks to explore the design space of translating the PCIU algorithm into hardware by utilizing several optimization techniques, ranging from fine grain to coarse grain and parallel coarse grain approaches. The paper presents a detailed implementation of a hardware accelerator of the PCIU based on an Electronic System Level (ESL) approach. Results obtained indicate that the hardware accelerator achieves on average 27x speedup over a state-of-the-art Xeon processor

    Memetic Multilevel Hypergraph Partitioning

    Full text link
    Hypergraph partitioning has a wide range of important applications such as VLSI design or scientific computing. With focus on solution quality, we develop the first multilevel memetic algorithm to tackle the problem. Key components of our contribution are new effective multilevel recombination and mutation operations that provide a large amount of diversity. We perform a wide range of experiments on a benchmark set containing instances from application areas such VLSI, SAT solving, social networks, and scientific computing. Compared to the state-of-the-art hypergraph partitioning tools hMetis, PaToH, and KaHyPar, our new algorithm computes the best result on almost all instances

    Hardware Accelerators Targeting a Novel Group Based Packet Classification Algorithm

    Get PDF
    Packet classification is a ubiquitous and key building block for many critical network devices. However, it remains as one of the main bottlenecks faced when designing fast network devices. In this paper, we propose a novel Group Based Search packet classification Algorithm (GBSA) that is scalable, fast, and efficient. GBSA consumes an average of 0.4 megabytes of memory for a 10 k rule set. The worst-case classification time per packet is 2 microseconds, and the preprocessing speed is 3 M rules/second based on an Xeon processor operating at 3.4 GHz. When compared with other state-of-the-art classification techniques, the results showed that GBSA outperforms the competition with respect to speed, memory usage, and processing time. Moreover, GBSA is amenable to implementation in hardware. Three different hardware implementations are also presented in this paper including an Application Specific Instruction Set Processor (ASIP) implementation and two pure Register-Transfer Level (RTL) implementations based on Impulse-C and Handel-C flows, respectively. Speedups achieved with these hardware accelerators ranged from 9x to 18x compared with a pure software implementation running on an Xeon processor

    An Efficient Evolutionary Task Scheduling/Binding Framework for Reconfigurable Systems

    Get PDF
    Several embedded application domains for reconfigurable systems tend to combine frequent changes with high performance demands of their workloads such as image processing, wearable computing, and network processors. Time multiplexing of reconfigurable hardware resources raises a number of new issues, ranging from run-time systems to complex programming models that usually form a reconfigurable operating system (ROS). In this paper, an efficient ROS framework that aids the designer from the early design stages all the way to the actual hardware implementation is proposed and implemented. An efficient reconfigurable platform is implemented along with novel placement/scheduling algorithms. The proposed algorithms tend to reuse hardware tasks to reduce reconfiguration overhead, migrate tasks between software and hardware to efficiently utilize resources, and reduce computation time. A supporting framework for efficient mapping of execution units to task graphs in a run-time reconfigurable system is also designed. The framework utilizes an Island Based Genetic Algorithm flow that optimizes several objectives including performance, area, and power consumption. The proposed Island Based GA framework achieves on average 55.2% improvement over a single-GA implementation and an 80.7% improvement over a baseline random allocation and binding approach

    An Advanced Island Based GA For Optimization

    No full text
    In this paper we present a new paradigm for static/dynamic optimization based on an Island-Based Genetic Algorithm (IGA). Also the main methodology and advances are reviewed and the main drawbacks of current methods are presented. An IGA consists of several independent populations (islands) each of which has its own GA operators (i.e. crossover, mutation, selection and replacement). Islands are also capable of exchanging chromosomes with each other. Primary issues in the basic (single population) GAs, such as low speed and premature convergence, can be reduced by taking advantage of the parallelism and migration. Remote chromosomes can prevent premature convergence in a population. Architecture of the PGA (Parallel GA) [6] can be implemented in a distributed environment [3] (i.e. each island resides on a separate processor) to speed up the system running time. Dynamically adjusting the local (i.e. GA operators) and migration parameters (i.e. rate and frequency) of the system, has been performed to optimize the efficiency of offspring and migration in IGA to solve the complex and dynamic problems. Since complexity of dynamic environments can be handled efficiently by Multi Agent Systems (MAS) so this research is aiming to apply the technology of Autonomous Agents [5] in design and implementation of IGA
    corecore