
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2013, Article ID 681894, 33 pages
http://dx.doi.org/10.1155/2013/681894

Research Article
Hardware Accelerators Targeting a Novel Group Based Packet
Classification Algorithm

O. Ahmed, S. Areibi, and G. Grewal

School of Engineering and Computer Science, University of Guelph, Guelph, ON, Canada N1G 2W1

Correspondence should be addressed to S. Areibi; sareibi@uoguelph.ca

Received 10 December 2012; Revised 26 February 2013; Accepted 26 February 2013

Academic Editor: Michael Hübner

Copyright © 2013 O. Ahmed et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Packet classification is a ubiquitous and key building block formany critical network devices. However, it remains as one of themain
bottlenecks faced when designing fast network devices. In this paper, we propose a novel Group Based Search packet classification
Algorithm (GBSA) that is scalable, fast, and efficient. GBSA consumes an average of 0.4 Megabytes of memory for a 10 k rule
set. The worst-case classification time per packet is 2 microseconds, and the preprocessing speed is 3 M rules/second based on a
Xeon processor operating at 3.4GHz.When compared with other state-of-the-art classification techniques, the results showed that
GBSA outperforms the competition with respect to speed, memory usage, and processing time. Moreover, GBSA is amenable to
implementation in hardware. Three different hardware implementations are also presented in this paper including an Application
Specific Instruction Set Processor (ASIP) implementation, and two pure Register-Transfer Level (RTL) implementations based on
Impulse-C and Handel-C flows, respectively. Speedups achieved with these hardware accelerators ranged from 9x to 18x compared
with a pure software implementation running on a Xeon processor.

1. Introduction

Packet classification is the process whereby packets are
categorized into classes in any network device. A packet 𝑃
is said to match a particular rule 𝑅 if all the fields of the
header of 𝑃 satisfy the regular expression of 𝑅. Table 1 gives
an example of a twelve-rule classifier. Each rule contains five
fields. The source and destination IP address are 32 bits each,
while the source and destination port address are 16 bits
each. An 8-bit address represents the protocol. Both IP and
protocol are in starting “base/mask” format, while the ports
are in range (starting : ending) format. The IP address should
be converted to a range format by using the mask field. For
example, an IP address “0.83.4.0/22” can be converted to a
range by using themask of 22 bits or 255.255.252.0 to produce
the low part of the range (0.83.4.0).The high part of the range
can be generated using the following formula:High=LowOR
232-Mask. Thus, the IP 0.83.4.0/22 can be converted to 0.83.4.0
as the low part and 0.83.7.255 as the high part. When the
mask equals 32, the IP is represented in exact format, which
translates to a match of the IP. All fields which are in prefix
(or exact format) in Table 1 can be easily converted to a range

of high and low fields using the above formula. It is important
to remember that when the IP address is converted to a range
format, the length of the IP source and IP destination in
Table 1 will change from 32 to 64 bits.

Almost every packet in a network is classified at one or
more stages. For example, elements such as layer-2 (switches)
and layer-3 (routers), as well as special-purpose classifiers
such as firewalls and load balancers, classify a packet as
they forward it from the end host to the web server. A
router classifies the packet to determine where it should be
forwarded, and it also determines theQuality of Service (QoS)
it should receive. In addition to the process of classifying
packets, the router attempts to balance the load among
other servers that will eventually process these packets (load
balancer). Afirewall classifies the packets based on its security
policies to decide whether or not to drop the packet, based on
the set of rules contained in the database.

1.1. Challenges and Limitations. There are three main
challenges faced when performing classification in today’s
networks [1]: configuration hardness, inflexibility, and

2 International Journal of Reconfigurable Computing

Table 1: A twelve-rule classifier.

No. IP (64 bits) Port (32 bits)
Protocol (8 bits)Source (32 bits) Destination (32 bits) Source (16 bits) Destination (16 bits)

1 240.118.164.224/28 250.13.215.160/28 88 : 88 53 : 53 0x01/0xFF
2 209.237.201.208/28 159.93.124.80/28 123 : 123 123 : 123 0x11/0xFF
3 209.67.92.32/28 159.102.36.48/28 69 : 69 21 : 21 0x06/0xFF
4 63.99.78.32/28 55.186.163.16/28 750 : 750 22 : 22 0x00/0x00
5 240.178.169.176/28 250.222.86.16/28 123 : 123 22 : 22 0x2f/0xFF
6 209.238.118.160/28 159.199.212.192/28 88 : 88 80 : 80 0x11/0xFF
7 63.20.27.0/28 55.103.209.48/28 162 : 162 123 : 123 0x11/0xFF
8 0.0.0.0/0 125.176.0.0/13 0 : 65535 0 : 65535 0x06/0xFF
9 0.0.0.0/0 125.0.0.0/8 0 : 65535 0 : 65535 0x00/0x00
10 33.0.0.0/8 0.0.0.0/0 0 : 65535 0 : 65535 0x06/0xFF
11 33.0.0.0/8 0.0.0.0/0 0 : 65535 0 : 65535 0x06/0xFF
12 69.0.206.0/23 0.0.0.0/0 0 : 65535 0 : 65535 0x00/0x00

inefficiency. These limitations result from the following
characteristics of packet classification.

(i) Complexity of classification operations: each rule
could contain any of the following five formats:
prefix, exact, range, greater than, and less than. A
combination of different formats tends to increase the
complexity of algorithms in the literature [2].

(ii) Semantic gap between entities on the packet path:
different entities on a packet’s path, including the
source and destination, have different amounts of
semantic and local context related to a particular
classification application.

(iii) Resource mismatch between entities on the packet
path: different entities on a packet’s path have different
amounts of processing resources (e.g., CPU,memory)
to utilize when classifying each packet.

1.2. Performance Metrics for Classification Algorithms. The
following are important metrics that can be used to evaluate
and compare the performance of packet classification algo-
rithms.

(i) Classification speed: faster links require faster clas-
sification. For example, links running at 40Gbps
can bring 125 million packets per second (assuming
minimum sized 40 byte TCP/IP packets).

(ii) Low storage requirements: lower storage requirements
enable the deployment of fast memory technologies,
such as SRAM, which can be used as an on-chip
cache by both software algorithms and hardware
architectures.

(iii) Fast updates: as the rule set changes, data structures
need to be updated on the fly. If the update process
is time consuming, the number of lost packets will
increase accordingly.

(iv) Scalability in the number of header fields: the fields
involved in packet classification vary based on the
application that is being targeted.

(v) Flexibility in specification: a classification algorithm
should support general rules, including prefixes and
operators (range, less than, greater than, equal to,
etc.), in addition to wild-cards.

1.3. Contributions. The main contributions of this work can
be summarized as follows.

(1) First, we introduce a novel and efficient algorithm
which has high scalability, is amenable to hardware
implementation [3], requires low memory usage, and
can support a high speed wire link. We explain in
detail the software implementation and data struc-
tures used to help researchers reproduce the work.

(2) Based on standard benchmarks used by many
researchers, results obtained indicate that the GBSA
is one of the fastest existing algorithm that can
accommodate a large rule set of size 10 k or more
(which could be a candidate rule set for the next
generation of core routers).

(3) We propose further enhancements to the GBSA,
making it more accessible for a variety of applications
through hardware implementation. Three hardware
accelerators using different implementation tech-
niques are presented in this paper.

The remainder of this paper is organized as follows.
Section 2 gives an overview of themain published algorithms
in the field of packet classification. In Section 3, the algorithm
and the main steps to implement it are presented, with all
stages frompreprocessing to classification. Comparisonswith
other published algorithms are then presented in Section 4.
Enhancements to the performance of theGBSA algorithm are
realized using an Application Specific Instruction Processor
(ASIP) introduced in Section 5. Pure RTL implementations
based on Electronic System Level design using Handel-C and
Impulse-C are discussed in Section 6. A detailed comparison
of all hardware implementations of GBSA is provided in

International Journal of Reconfigurable Computing 3

Section 7. Finally, conclusions and future work are presented
in Section 8.

2. Previous Work

Since the packet classification problem is inherently com-
plex from a theoretical standpoint [2], previously published
algorithms have not been able to fully satisfy the need of
network devices.The authors in [4] categorize existing packet
classification algorithms into four main classes (exhaustive
search, decision tree, decomposition, and Tuple Space based
methods), based on the algorithm’s approach to classifying
packets.

2.1. Software Based Approaches. Brute force/exhaustive search
techniques examine all entries in the filter set sequentially
similar to Ternary Content Addressable Memory (TCAM)
[2] approaches. Brute force techniques perform well in terms
of memory usage, do not require any preprocessing, and can
be updated incrementally with ease. However, they require
𝑂(𝑁) memory access per lookup, where 𝑁 is the number of
rules in the rule set. For even modest sized filter sets, a linear
search becomes prohibitively slow.

Decision Tree based approaches construct a decision tree
from the filters and traverse the decision-tree using packet
fields, such as HiCuts [5] and HyperCuts [6] which are very
close in performance in terms of classification [7]. Decision
trees are geared towards multiple-field classification. Each of
the decision tree leaves contains a rule or subset of the rule set.
Classification is performed by constructing a search key from
the packet header fields and then using this key to traverse
the tree. The main disadvantage of this method is the high
memory requirement and long preprocessing time.

Decomposition/Divide-and-Conquer Techniques tend to
decompose the multiple-field search into instances of single-
field searches, performing independent searches on each
packet field before combining the results, like RFC [8], ABV
[9], Parallel BV [10], and PCIU [11]. Another viable approach
that deals with the complexity of packet classification is the
decomposition of multiple-field into several instances of a
single-field search problem before combining the results at
the end. This method provides a high-speed classification
time, yet it requires more preprocessing time and memory
usage, which makes it unsuitable for systems that require
frequent updating of the rule set.

Tuple Space based methods partition the filter set accord-
ing to the number of specified bits in the filter and then
probe the partitions or a subset of the partitions using simple
exact match searches, such as Tuple Space [12], Conflict-Free
Rectangle search [13]. The Tuple Space approach attempts
to quickly narrow the scope of a multiple-field search by
partitioning the filter set using tuples. It is motivated by
the observation that the number of distinct tuples is much
smaller than the number of filters in the filter set. This
class of classification algorithms has the lowest memory
usage, yet it requires a high preprocessing time, and its
classification time could vary based on the nature of the rule
set.

2.2. Hardware Based Approaches. It has been noted that to
circumvent the shortcomings of software based approaches
to packet classification, many novel techniques employ both
hardware and software components. It is emphasized that
pure software implementations typically suffer from three
major drawbacks: a relatively poor performance in terms of
speed (due to the number of memory access required), a lack
of generalizability (in order to exploit certain features of a
specific type of rule set), and a large need for preprocessing.

To achieve the flexibility of software at speeds normally
associated with hardware, researchers frequently employ
reconfigurable computing options using Field Programmable
Gate Arrays (FPGAs). Although the flexibility and the poten-
tial for parallelism are definite incentives for FPGA based
approaches, the limited amount of memory in state-of-the-
art FPGA designs entails that large routing tables are not
easily supported. Consequently, researchers frequently make
use of TCAM when developing new packet classification
algorithms. Although TCAM can be used to achieve high
throughput, it does exhibit relatively poor performance with
respect to area and power efficiency.Nevertheless, the authors
in [14] were able to develop a scalable high throughput fire-
wall, using an extension to the Distributed Crossproducting
of Field Labels (DCFL) and a novel reconfigurable hardware
implementation of Extended TCAM (ETCAM). An Xilinx
Virtex 2 Pro FPGA was used for their implementation, and
as the technique employed was based on a memory intensive
approach, as opposed to the logic intensive one, on-the-
fly updating remained feasible. A throughput of 50 million
packets per second (MPPS) was achieved for a rule set of
128 entries, with the authors predicting that the throughput
could be increased to 24Gbps if the designs were to be
implemented on Virtex-5 FPGAs. In their development of
a range reencoding scheme that fits in TCAM, the authors
of [15] proposed that the entire classifier be reencoded (as
opposed to previous approaches that elect not to reencode the
decision component of the classifier). The approach in [15]
significantly outperforms previous reencoding techniques,
achieving at least five times greater space reduction (in terms
of TCAM space) for an encoded classifier and at least three
times greater space reduction for a re-encoded classifier
and its transformers. Another interesting range encoding
scheme to decrease TCAM usage was proposed in [16], with
ClassBench being used to evaluate the proposed scheme.The
encoder proposed in [16] used between 12% and 33% of the
TCAM space needed in DRIPE or SRGE and between 56%
and 86% of the TCAM space needed in PPC, for classifiers of
up to 10 k rules.

Several other works on increasing the storage efficiency
of rule sets and reducing power consumption have also
been investigated, with pure Register-Transfer Level (RTL)
hardware approaches proposed by many researchers [17, 18].
Although the dual port IP Lookup (DuPI) SRAM based
architecture proposed in [17] maintains packet input order
and supports in-place nonblocking route updates and a
routing table of up to 228K prefixes (using a single Virtex-
4), the architecture is only suitable for single-dimension
classification tasks. The authors of [18], on the other hand,
proposed a five-dimension packet classification flow, based

4 International Journal of Reconfigurable Computing

Table 2: Benchmarks: rule sets and traces used.

Benchmark size ACL FW IPC
Rule Trace Rule Trace Rule Trace

0.1 k 98 1000 92 920 99 990
1 k 916 9380 791 8050 938 9380
5 k 4415 45600 4653 46700 4460 44790
10 k 9603 97000 9311 93250 9037 90640

on a memory-efficient decomposition classification algo-
rithm, which uses multilevel Bloom Filters to combine the
search results from all fields. Bloom Filters, having recently
grown in popularity, were also applied in the approaches
described in [18, 19]. The interesting architecture proposed
in [19] used a memory-efficient FPGA based classification
engine entitled Dual Stage Bloom Filter Classification Engine
(2sBFCE) and was able to support 4 K rules in 178K bytes
memories. However, the design takes 26 clock cycles on
average to classify a packet, resulting in a relatively lower aver-
age throughput of 1.875Gbps. The hierarchical based packet
classification algorithm described in [18] also made use of a
Bloom filter (for the source prefix field), and the approach
resulted in a better average and worst-case performance in
terms of the search and memory requirements.

Several novel packet classification algorithms mapped
onto FPGAs have been published in recent years includ-
ing [20–23]. In [20], several accelerators based on hard-
ware/software codesign and Handel-C were proposed. The
hardware accelerators proposed achieved different speedups
over a traditional general purpose processor. The authors
of [21] proposed a multifield packet classification pipelined
architecture called Set Pruning Multi-bit Trie (SPMT). The
proposed architecture was mapped onto an Xilinx Virtex-5
FPGA device and achieved a throughput of 100Gbps with
dual port memory. In [22] the authors presented a novel
classification technique that processes packets at line rate
and targets NetFPGA boards. However, there is no report of
preprocessing time nor evaluation of the architecture on any
known benchmarks. An interesting work by [23] presented
a novel decision tree based linear algorithm that targets the
recently proposed OpenFlow that classifies packets using up
to 12 tuple packet header fields. The authors managed to
exploit parallelism and proposed a multipipeline architecture
that is capable of sustaining 40Gbps throughput. However,
the authors evaluated their architecture using only the ACL
benchmark from ClassBench. The author in [24] presents
a low power architecture for a high-speed packet classifier
which can meet OC-768 line rate. The architecture consists
of an adaptive clocking unit which dynamically changes the
clock speed of an energy efficient packet classifier to match
fluctuations in traffic on a router line card.

3. A Group Based Search Approach (GBSA)

Themost rudimentary solution to any classification problem
is simply to search through all entries in the set.The complex-
ity of the sequential search is𝑂(𝑁), where𝑁 is the number of
rules in the rule set.Therefore, classification timewill increase

linearly by increasing the number of rules. Linear search is
still unsuitable for a database with thousands of rules. The
increase in computation time can bemitigated by reducing𝑁.
The number of rules can be reduced by decomposing the rule
set into groups and, accordingly, performing a parallel search.
This approach tends to increase the speed by a factor of 𝐹,
yet it increases the resources needed by a similar factor. An
alternative approach to reducing the search size is to cluster
the rule set. Accordingly, the search will then be performed
on a smaller subset. Hence, performance is improved without
necessarily increasing the computational resources required.

3.1. Main Idea. The main idea of the GBSA is to reduce the
number of rules existing in the classifier using a clustering
approach. This will be explained in more detail using the
rule sets in ClassBench [25]. These rule sets (benchmarks)
are used by many researchers to evaluate packet classification
algorithms, since their characteristics are similar to actual
rule sets used in backbone routers [7].

3.1.1. Benchmarks. Table 2 introduces three main bench-
marks along with their testing packets (traces). The Class-
Bench [25] performed a battery of analysis on 12 real filter
sets provided by Internet Service Providers (ISPs), network
equipment vendors, and researchers working in the field.

The filter sets utilize one of the following formats.

(i) Access Control List (ACL): standard format for secu-
rity, VPN, and NAT filters for firewalls and routers
(enterprise, edge, and backbone).

(ii) Firewall (FW): proprietary format for specifying
security filters for firewalls.

(iii) IP Chain (IPC): decision tree format for security,
VPN, and NAT filters for software-based systems.

3.1.2. Rule Overlap. The rule set can be described as a two-
dimensional surface that employs a few of the packet fields.
The high byte of the source IP address is used to point to
the x-axis, while the high byte of the destination IP address
is used to point to the y-axis. Thus, a two-dimensional
surface (256 × 256) can be plotted as an alternative rep-
resentation of the three benchmarks, as demonstrated by
Figure 1. It is clear from Figure 1 that the number of over-
lapping/nonoverlapping regions varies based on the nature
of the rules and their corresponding overlap. Each region
can contain one or more rules. The number of regions tends
to increase as more overlap occurs among the rule set,
which causes more challenges to the classification algorithm

International Journal of Reconfigurable Computing 5

1
32

4

𝐼𝑃𝑆𝑟𝑐

𝐼𝑃
𝐷
𝑠𝑡

(a) Four regions (ACL)

1 2

3

5 4

𝐼𝑃𝑆𝑟𝑐

𝐼𝑃
𝐷
𝑠𝑡

(b) Five regions (IPC)

1

6

6

4 4
2 23

5 57
2 23

𝐼𝑃𝑆𝑟𝑐

𝐼𝑃
𝐷
𝑠𝑡

(c) Seven regions (FW)

Figure 1: Overlap and regions of benchmarks.

 0
 1000
 2000
 3000
 4000
 5000
 6000

 0 50 100 150 200 250

Ru
le

 o
cc

ur
re

nc
e

High byte value of IP source

(a) IP source distribution of 10 k rule set

 0 50 100 150 200 250
High byte value of IP destination

 0

 500

 1000

 1500

 2000

 2500

Ru
le

 o
cc

ur
re

nc
e

(b) IP destination distribution of 10 k rule set

 7000
 7500

 8000
 8500
 9000
 9500

 10000

Ru
le

 o
cc

ur
re

nc
e

High byte value of port source
 0 50 100 150 200 250

ACL
FW
IPC
(c) Port source distribution of 10 k rule set

 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000
 6500
 7000
 7500

Ru
le

 o
cc

ur
re

nc
e

 0 50 100 150 200 250

ACL
FW
IPC

High byte value of port destination

(d) Port destination distribution of 10 k rule set

Figure 2: Distribution of rules using the first byte of each dimension (10 k rule set).

in terms of preprocessing and classification. As illustrated
in Figure 1, the FW benchmarks in Table 2 are the most
challenging rule sets due to the high number of overlapping
regions. On the other hand, the ACL benchmark has no
overlapping regions and therefore can be handled easier by
classification algorithms.

3.1.3. Rule Distribution. One of the main objectives of GBSA
is to distribute rules based on the first few bits of each
dimension in the rule set. If the rules are distributed in a
uniform manner throughout the group, this should reduce
classification time. The uniform distribution will attempt to
force each group or cluster formed to have an equal number
of rules. A graphic representation for the first byte of each
dimension should identify an appropriate rule distribution
among the five dimensions. The distributions of the 10 k
rule set for all benchmarks (using the first byte of each
dimension) are shown in Figure 2. By observing Figure 2

carefully, we find that the highest IP byte (byte [3]) for both
source and destination has the lowest average rule occurrence
(distribution) for the majority of benchmarks compared to
the average rule occurrence (distribution) using the source
and destination port.

Despite the fact that the average occurrence in any of
these distributions is much lower than the original rule set
size (10 k), they are not practical for high-speed classification,
due to the cluster size which needs to be searched. Combining
two or more dimensions tends to reduce the number of rules
per group to an even greater extent. Therefore, it would be
beneficial to combine the two sets of bits of IP addresses from
the rule set in the manner of a clustering methodology.

3.1.4. Grouping and Clustering. By combining the prefix of
both source and destination IP addresses, the rules tend
to distribute more uniformly and the average size should
decrease dramatically. The highest significant bytes of the

6 International Journal of Reconfigurable Computing

 0

 0.5

 1

0/
0

1/
0

2/
0

3/
0

4/
0

5/
0

6/
0

7/
0

8/
0

9/
0

10
/0

11
/0

12
/0

13
/0

14
/0

15
/0

16
/0

Ti
m

e (
m

s)

Header size IP source/IP destination

−0.5

−1

(a) Preprocessing time for 10 k rules

Ti
m

e (
m

s)

0/
0

1/
0

2/
0

3/
0

4/
0

5/
0

6/
0

7/
0

8/
0

9/
0

10
/0

11
/0

12
/0

13
/0

14
/0

15
/0

16
/0

Header size IP source/IP destination

 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

(b) Classification time for 100 k packets

0/
0

1/
0

2/
0

3/
0

4/
0

5/
0

6/
0

7/
0

8/
0

9/
0

10
/0

11
/0

12
/0

13
/0

14
/0

15
/0

16
/0

Header size IP source/IP destination
ACL
FW
IPC

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

M
em

or
y

(M
B)

(c) Memory usage (Mbyte) for 10 k rules

Figure 3: Effect of varying IP source size on preprocessing, classification, and memory.

source/destination IP address can be combined to form a 16-
bit group address (cluster index). A lookup table of size 216
(64K) will then be used to point to all groups of rule sets.The
maximum number of groups resulting from this operation
should be less than the maximum possible size (i.e., 64 k). By
examining the rule sets of all benchmarks carefully, we can
conclude that the wild-card rules are the main contributors
to the increase of number of rules per group. Therefore, this
clustering methodology can be further improved in terms of
preprocessing,memory usage, and classification by excluding
all of the wild-cards in both IP source and destination. Two
other lookup tables of size 28 (256 bytes) are used to point to
the wild-card rules for both IP source and destination.

In general, the GBSA’s main goal is to utilize the starting
bits fromboth IP source and IP destination to generate cluster
of rules. The GBSA can accommodate any number of bits
from source/destination IP to group and cluster rules.

To ensure that the idea of combining IP source and IP
destination to form groups is valid, we tested our idea by
using either the IP source or IP destination to form the groups
of the GBSA. Figure 3 depicts the result for the 10 k rule set

for the three benchmarks when only the IP source prefix was
used. In this experiment, we clustered the rules using only
IP source with the prefix varying from 0 up to 16. It is clear
that the classification time remains high for all sizes of the
IP source prefix for the FW benchmark. It is also clear that
after a prefix of size six, the classification time decreases for all
other benchmarks. On the other hand, the memory increases
sharply after size twelve.

Figure 4 depicts the result for the 10 k rule set for the
three benchmarks when only the IP destination prefix was
used. In this experiment, we cluster the rule using the IP
destination instead of the IP source with the same prefix
range (from 0 up to 16). It is evident that the classification
time remains high for all sizes of the IP destination prefix
for both FW and ACL benchmarks. It is also clear that after
a prefix of size two the classification time does not improve
for FW. On the other hand, the memory usage increases
sharply after size of three for the FW. It is obvious from
Figures 3 and 4 that using a single dimension does not reduce
the classification time involved. Therefore, combining two or
more prefixes of the rule dimensions should lead to better

International Journal of Reconfigurable Computing 7

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

Ti
m

e (
m

s)

0/
0

0/
1

0/
2

0/
3

0/
4

0/
5

0/
6

0/
7

0/
8

0/
9

0/
10

0/
11

0/
12

0/
13

0/
14

0/
15

0/
16

Header size IP source/IP destination

(a) Preprocessing time for 10 k rules

Ti
m

e (
m

s)

 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

Header size IP source/IP destination

0/
0

0/
1

0/
2

0/
3

0/
4

0/
5

0/
6

0/
7

0/
8

0/
9

0/
10

0/
11

0/
12

0/
13

0/
14

0/
15

0/
16

(b) Classification time for 100 k packets

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

M
em

or
y

(M
B)

Header size IP source/IP destination

ACL
FW
IPC

0/
0

0/
1

0/
2

0/
3

0/
4

0/
5

0/
6

0/
7

0/
8

0/
9

0/
10

0/
11

0/
12

0/
13

0/
14

0/
15

0/
16

(c) Memory usage (Mbyte) for 10 k rules

Figure 4: Effect of varying IP destination size on preprocessing, classification, and memory.

solutions. From Figure 2, the IP source and IP destination
are the best candidates for the GBSA algorithm proposed,
as they have the lowest average distribution among the four
dimensions. Based on a prefix of size 8, the three tables sizes
will be as follows:

(i) 28(from the Source prefix) + 8(from the Destination prefix) = 216

= 64KByte;
(ii) 28(from the Source prefix) = 28 = 256Byte;
(iii) 28(from the Destination prefix) = 28 = 256Byte.

The prefixes of both IP source and IP destination will
be combined to form a 16-bit address for a lookup table of
size 216. The maximum number of groups resulting from this
operation should be less than themaximumpossible size (i.e.,
64 KB). For the 8-bit prefixes for both IP addresses, we use
a 64KB memory as a lookup table of group’s pointers (i.e.,
index of all rules belonging to it). Each group will contain all

the rules that have the same values of the high byte for both
source and destination IP addresses. The number of rules
belonging to each group will be condensed as compared to
the original rule set size.

3.2. The Preprocessing Phase. Preprocessing in GBSA is
divided into two main steps:

(i) generating groups for each of the three lookup tables,
(ii) removing redundancy within these groups.

(1) Group Generation. The group generation step is demon-
strated by the pseudocode of Algorithm 1. The rule set is
divided into three main groups:

(i) source IP with wild-card rules,
(ii) destination IP with wild-card rules,
(iii) remaining rules.

8 International Journal of Reconfigurable Computing

For all rules in the rule-set
IF SourceIP is a WildCard

Append rule to 𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃
𝐷𝑠𝑡

Table
Else IF DestIP is a WildCard

Append rule to the 𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃
𝑆𝑟𝑐

Table
Else

Append rule to 𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃
𝐺𝑒𝑛

Table

Algorithm 1: Preprocessing: group generation.

1 240
2 209
3 209
4 63
5 240

Group

decomposition

250
159
159
55
250

6 209
7 63
8
9

10 33

159
55
125
125

11 33
12 69

1 240
2 209
3 209
4 63
5 240

250
159
159
55
250

6 209
7 63

8
9

10 33

159
55

125
125

11 33
12 69

Address

1 240
2 209
3 209
4 63
5 240

250
159
159
55
250

6 209
7 63

8
9

10 33

159
55

125
125

11 33
12 69

Address
generation

Address

Address

Address

53663
53663
16183

53663
16183

125
125

33
33
69

Group

generation

1
2
3

Address

53663
16183

125

33

RuleList

4
Address RuleList

5
Address RuleList

696 12

𝐼𝑃𝑆 𝐼𝑃𝐷
𝐼𝑃𝑆

𝐼𝑃𝑆

𝐼𝑃𝐷

𝐼𝑃𝐷

𝐼𝑃𝑆 𝐼𝑃𝐷

𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃𝐷𝑒𝑠𝑡𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃𝐷𝑒𝑠𝑡

𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃𝐷𝑒𝑠𝑡

𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃𝑆𝑟𝑐

𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃𝑆𝑟𝑐𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃𝑆𝑟𝑐

RuleRule
Rule

Step 1 Step 2 Step 3 Step 4

Group

Group

Group

1, 5
2, 3, 6
4, 7

8, 9

10, 11

LookupIP𝐺𝑒𝑛LookupIP𝐺𝑒𝑛LookupIP𝐺𝑒𝑛

—
—

—
—
—

—
—
—

—
—
—

—
—

—
—

𝐼𝑃𝑆∗256 + 𝐼𝑃𝐷

61690

61690

61690

Figure 5: The GBSA preprocessing steps using the rule set in Table 1.

(2) Redundancy Removal. The redundancy removal step
performs further preprocessing on the three lookup tables by
assigning unique IDs to each cluster generated.

(3) Preprocessing Example. In this example we explain the pre-
processing phase in more detail. The example demonstrates
the capability of the preprocessing phase to cluster rules that
have similar attributes, based on contents of Table 1 and the
steps shown in Figure 5.

Step 1. For each rule listed in Table 1, create a table entry
consisting of the most significant byte of IP source and the
most significant byte of IP destination as shown in Figure 5.
Rules 1 to 7 have both fields present, yet rules 8 and 9 have
a wild-card in the IP source (𝐼𝑃

𝑠𝑟𝑐
) field. On the other hand,

rules 10 to 12 have a wild-card in the IP destination (𝐼𝑃
𝑑𝑠𝑡
)

field. A wild-card is shown as a “-” in Step 1 of Figure 5.

Step 2. Partition the table created in Step 1 to three separate
tables, namely,𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝐺𝑒𝑛
,𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝐷𝑒𝑠𝑡
, and𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝑆𝑟𝑐
.

The partitioning of these table depends on the values of both
𝐼𝑃
𝑠𝑟𝑐

and 𝐼𝑃
𝑑𝑠𝑡

columns in Step 1.

Step 3. For each table entry in Step 2, if the rule belongs to
the 𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝐺𝑒𝑛
, the address field generated is based on the

following formula: 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 = 𝐼𝑃
𝑠𝑟𝑐
∗ 256 + 𝐼𝑃

𝑑𝑠𝑡
; otherwise

the existing 𝐼𝑃
𝑠𝑟𝑐

or 𝐼𝑃
𝑑𝑠𝑡

fields are copied to the address field.

Step 4. All rules which have similar address are combined
into a single group or cluster. For example, Group (cluster)

1 contains rules 1 and 5, as both of these rules have the same
𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝐺𝑒𝑛
address, namely, 61690.

After the completion of Step 4, six groups (clusters) are
formed from the original twelve rules. Figure 6 shows the
memories (lookup tables) required to store the generated
groups representing the rule set.

Each memory consists of two fields: 𝐴𝐷𝑅 (the starting
address of the rule list of the group) and 𝑆𝑖𝑧𝑒 (the number
of rules in the group). For example location 16183 in the
𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝐺𝑒𝑛
memory contains𝐴𝐷𝑅 = 5 and 𝑆𝑖𝑧𝑒 = 2which

represent Group 3 (cluster). Group 3 (cluster) (Step 4, third
row) of Figure 5 consists of two rules (namely, 4 and 7). In
the RuleList memory, location 5 contains an entry 4 (i.e., rule
4) followed by rule 7 in location 6.

3.3. Classification. Following the preprocessing phase, the
classification phase proceeds with the following steps.

(i) The high bytes of the IP source and destination
addresses of the incoming packets are first extracted
as shown in Figure 7.

(ii) Searching within 𝑙𝑜𝑜𝑘𝑢𝑝𝐼𝑃
𝐺𝑒𝑛

table:

(a) the most significant bytes of the IP source and
destination addresses are concatenated to form
a 16-bit address,

(b) the 16-bit address formed is then used to access
rules in the 64KB 𝑙𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝐺𝑒𝑛
table,

International Journal of Reconfigurable Computing 9

ADR Size

10
51
22
33
64
45
76
87
98

109
1110
1211

ADR Size

0

65535

0

255

0

255

NULL 0

61690

NULL 0

0 2

53663 2 3

16183 5 2

NULL 0

NULL 0

NULL 0

NULL 0

7 2125

ADR Size

9 233

11 169

(Mem#2) 𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃𝐷𝑒𝑠𝑡

(Mem#1) 𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃𝐺𝑒𝑛

(Mem#3) 𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃𝑆𝑟𝑐

(Mem#4) Rule list

Figure 6: The GBSA memory structure following the preprocessing stage.

0 31 32

32 39

63 64 79 80 95 96 103

Source IP Destination IP Source port Destination port Protocol

List of
pointers

List of
pointers

List of
pointers

0 7

The incoming packet

32 16 16 832

...

...

...

Rule-list1

Rule-list𝑁

Rule-list𝑁+1

Rule-list𝑁+𝑀+1

Rule-list𝑁+𝑀

Rule-list𝑁+𝑀+𝐾

8bit

8bit8bit

8bit

8bit

8bit

8bit

8bit

16bit

LookupIP𝐺𝑒𝑛(64𝐾)

LookupIP𝑆𝑟𝑐(256)

LookupIP𝐷𝑒𝑠(256)

Figure 7: GBSA classification phase.

10 International Journal of Reconfigurable Computing

Table 3: Classification example: applying a 5-packet set.

Incoming packet 𝐼𝑃
𝑆𝑟𝑐

𝐼𝑃
𝐷𝑠𝑡

𝑃𝑜𝑟𝑡
𝑆𝑟𝑐

𝑃𝑜𝑟𝑡
𝐷𝑠𝑡

Protocol Packet belongs
(32 bits) (32 bits) (16 bits) (16 bits) (8 bits) to Rule ID

a 240.118.164.31 250.13.215.168 88 53 1 1
b 209.238.118.166 159.199.212.198 88 80 17 6
c 63.99.78.40 55.186.163.23 750 22 0 4
d 100.251.52.13 125.10.251.18 80 80 17 9
e 69.0.207.9 68.103.209.50 162 123 17 12

(c) a group IDwill be identified. For example, when
the 𝐼𝑃

𝑆𝑐𝑟
= 63 and the 𝐼𝑃

𝐷𝑒𝑠
= 55 of the

incoming packet, then a group ID = 16183
is calculated. This ID is used as an address to
the 𝑙𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝐺𝑒𝑛
(Mem 1) whose contents are a

group of size 2 and a starting address of 5,
(d) if the group ID is not empty, a sequential search

is performed within the group to match the
incoming packet with an existing rule in the
group. In this example the incoming packet will
be matched with rule 4,

(e) if a match exists, the winning rule is generated
and the search is terminated. Otherwise, a
search is initiated in either 𝑙𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝑆𝑟𝑐
(Mem 2)

or 𝑙𝑜𝑜𝑘𝑢𝑝𝐼𝑃
𝐷𝑠𝑡

(Mem 3).

(iii) Searching within 𝑙𝑜𝑜𝑘𝑢𝑝𝐼𝑃
𝑆𝑟𝑐

table:

(a) themost significant byte of the IP source address
of the incoming packet is used as a pointer to
𝑙𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝑆𝑟𝑐
,

(b) a group ID will be identified,
(c) if the group ID is not empty, a sequential search

is performed within the group to match the
incoming packet with an existing rule in the rule
set. For example, when 𝐼𝑃

𝑆𝑐𝑟
= 63, the value will

be null (which indicates that there is no group
to point to),

(d) if a match exists, the winning rule is generated
and the search is terminated. Otherwise, a
search is initiated in 𝑙𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝐷𝑠𝑡
table,

(iv) Searching within 𝑙𝑜𝑜𝑘𝑢𝑝𝐼𝑃
𝐷𝑠𝑡

table:

(a) the most significant byte of the IP destination
address of the incoming packet is used as a
pointer to 𝑙𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝐷𝑠𝑡
,

(b) a group ID will be identified,
(c) if the group ID is not empty, a sequential search

is performed within the group to match the
incoming packet with an existing rule in the rule
set,

(d) if a match exists, the winning rule is generated.
There will be, nomatch for the incoming packet.

3.3.1. Classification Example. The classification phase is
demonstrated using Figure 5 along with Table 3, which lists
five possible incoming packets.The high bytes of both packets
IP source and IP destination are used as addresses for the
three lookup tables. For example, the first trace (packet “a”)
has the following addresses:

(i) 𝐼𝑃
𝑠𝑟𝑐

address in the 𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃
𝑆𝑟𝑐

memory = 240,
(ii) 𝐼𝑃

𝑑𝑠𝑡
address in the 𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝐷𝑠𝑡
memory = 250,

(iii) 𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃
𝐺𝑒𝑛
= 61690 the address is calculated based

on the following formula: ((𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃
𝑆𝑟𝑐
∗ 256) +

𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃
𝐷𝑠𝑡
).

The result of 𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃
𝑆𝑟𝑐

and 𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃
𝐷𝑠𝑡

will produce a
NULL, yet 𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝐺𝑒𝑛
produces rule 1. The same steps are

applied to the remaining incoming packets, producing the
appropriate Rule ID, as shown in Table 3.

4. Experimental Results

The evaluation of the GBSA algorithm was based on the
benchmarks introduced in Table 2. The seeds and program
in ClassBench [25] were used to generate the rule sets.

4.1. RFC, HiCut, Tuple, and PCIU: A Comparison. Several
packet classification algorithms exist in the literature, and
it would be prohibitive to compare the proposed GBSA
technique to all available algorithms. Accordingly, we have
chosen the most efficient packet classification algorithms [7]
to be compared with our proposed approach. Figure 8 shows
a comparison between RFC [8], HiCut [5], Tuple [12], PCIU
[11], and GBSA [26]. It is clear from the results obtained that
GBSA outperforms all algorithms in terms of memory usage,
preprocessing, and classification time. The comparison was
mainly based on the ACL benchmark since the number of
distinct overlapping regions in both FWand IPCbenchmarks
are quite high, which leads to prohibitive CPU time for the
preprocessing stage of the RFC algorithm.The overall perfor-
mance of Tuple search using the FW benchmark deteriorates
and its memory consumption increases dramatically. The
GBSA’s performance, on the other hand, was not affected by
the complexity of the FW benchmark. Figure 8 clearly shows
that the GBSA has an advantage over the other algorithms.
Figure 9 shows a comparison between both GBSA and PCIU
[11] on the three benchmarks with different sizes. It is clear
that the GBSA algorithm outperforms the PCIU on all
benchmarks.

International Journal of Reconfigurable Computing 11

 1

 10

 100

 1000

 10000

 100000

Ti
m

e (
m

s)

Rule set size

Preprocessing time (ACL)

0.1K 1K 5K 10K

(a)

Ti
m

e (
m

s)

 1

 10

 100

 1000

 10000

The trace packets size

Classification time (ACL)

1K 10K 50K 100K

(b)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

M
em

or
y

(M
B)

Rule set size

RFC
HiCut
Tuple

PCIU
GBSA

0.1K 1K 5K 10K

Memory usage (M byte) (ACL)

(c)

Figure 8: A comparison between RFC, HiCut, Tuple, PCIU, and GBSA.

4.2. Analysis of Results. TheGBSA algorithm outperforms all
the previously published packet classification algorithms due
to the following properties.

(1) The GBSA avoids using complex data structures sim-
ilar to those utilized in decision tree based algorithms
(which necessitates traversal of the tree). Accordingly,
no comparison is required at each node to make a
decision about the next nodes address (these com-
parison operations and the number of times memory
accessed tend to increase the classification time).
Also, the number of nodes and their pointers tends
to consume a huge amount of memory. Also, when
the rule set has too many overlap regions, the size of
memory and the preprocessing time increase sharply,
as demonstrated previously by Figure 1 for the IPC
and FW benchmarks.

(2) The GBSA does not require intensive preprocessing
time similar to that required by the RFC. The high
preprocessing time in RFC can easily take several days
even when a powerful processor is used. Again, this
problem tends to occur when a rule set has a huge
overlap region.

(3) The GBSA main classification operation is “compar-
ison” within a small group due to clustering per-
formed in the preprocessing phase. Using a simple
combination of the IP source and IP destination as
an address for a lookup table makes the classification
and preprocessing time faster than other methods
published in the literature.

Simply put, the performance of GBSA is attributed to the sim-
plicity and efficiency of the clustering method used. Unlike
other algorithms that require sophisticated data structures,

12 International Journal of Reconfigurable Computing

 0

 50

 100

 150

 200

 250

Ti
m

e (
m

s)

Preprocessing time

ACL IPC FW

Rule set size

0.
1

K
1

K
5

K
10

K

0.
1

K
1

K
5

K
10

K

0.
1

K
1

K
5

K
10

K
(a)

ACL IPC FW

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

Ti
m

e (
m

s)

The trace packets size

Classification time

 0

1
K

10
K

5
0

K
10
0

K

1
K

10
K

5
0

K
10
0

K

1
K

10
K

5
0

K
10
0

K

(b)

ACL IPC FW

PCIU
GBSA

 0

 0.5

 1

 1.5

 2

 2.5

 3

M
em

or
y

(M
B)

Rule set size

0.
1

K
1

K
5

K
10

K

0.
1

K
1

K
5

K
10

K

0.
1

K
1

K
5

K
10

K

Memory usage (M byte)

(c)

Figure 9: A comparison between PCIU and GBSA based on three benchmarks.

decision trees, and long preprocessing time, GBSA attempted
to distribute the rule sets more uniformly, and thus the size of
the latter decreased dramatically.

4.3. Improving Performance. While a pure software imple-
mentation can generate powerful results on a server, an
embedded solution may be more desirable for some applica-
tions and clients. Embedded, customized hardware solutions
are typically much more efficient in terms of speed, cost, and
size as compared to solutions on general purpose processor
systems. The next few sections of this paper cover three of
such translations of the GBSA into the realm of embedded
solutions using FPGA technology. In Section 5, we discuss an
ASIP solution that attempts to develop a specialized data path
to improve the speed and power of the GBSA algorithm. In
Section 6, we discuss two solutions that employ a pure RTL
approach with an ESL design methodology using Handel-
C and Impulse-C. These sections are complete with full

disclosure of implementation tools, techniques, strategies for
optimization, results, and comparison.

5. Application Specific Instruction
Processor (ASIP)

One of the key advantages of an ASIP implementation [27] is
the substantial performance to development time ratio that
also allows for greater flexibility in case updates or other
upgrades become necessary in the future. While a pure RTL
implementation would be much more effective and efficient
at satisfying constraints in terms of power and design speed,
it would normally take a longer time to develop. Customized
processors (with specialized coprocessors within the data
path), on the other hand, are efficient and easy to develop.
These customized processors can achieve greater perfor-
mance enhancements via a dedicated, specialized instruction
set in a shorter development time frame as compared to

International Journal of Reconfigurable Computing 13

Algorithm

Simulation
ISS, XTML, XTSC

Configure, extend
TIE

Analyze
Profile, xenergy, pipeline view

Xtensa
design cycle

Figure 10: Tensilica’s Eclipse based Xtensa Xplorer IDE tools.

pure RTL implementations. Furthermore, designers can often
effectively fix the problematic bottlenecks of software by
tweaking the processor configuration/specification. These
design details include instruction set, processor pipeline
depth, processor instruction/data bus width, cache memory
size, register array size, and variable/constant register. As
underlying tools mature with time and demand, the ASIP
approach will become an increasingly attractive option for
many products.

5.1. CAD Tools Used. The key development tools used in this
work were based on the Xtensa Software Developers Toolkit
[27]. The Xtensa Development Environment V4.0.4.2 was
used to design, test, simulate, and enhance the new cus-
tomized processor and its related software. Xtensa provides
a set of tools that if used together facilitate an efficient, user-
friendly, comprehensive, and integrated dataplane processor
design and optimization environment that interfaces with
both sides of the spectrum very well (both software and
hardware).

The Tensilica Eclipse based Xtensa Xplorer IDE can gen-
erate a full custom processor system, as shown in Figure 10.
The tools offer several means for optimizing the design.
The first method is based on an Automated Processor
Development (APD) approach, which profiles the application
and identifies its weaknesses while generating a new con-
figuration with improved performance. The second method
assists the designer in defining a new data-path function
(or function) and modifies the Xtensa dataplane processor
(DPU) configuration.The tools provide a Simple Verilog-like
Tensilica Instruction Extension (TIE) language for processor
customization, whereby the designer can enforce the new
instruction(s). The tools provided by the Xtensa Software
Development framework offer a fully integrated flow for
software compilation, profiling, simulation, debugging, and
so forth. This allows a designer to test and modify software
intended to run on the DPU. It incorporates powerful tools
that are especially useful for ASIP development, such as the
ability to profile software and report the gathered timing data
in various graphs and tables.

5.2. Various Implementations. The following are the basic
steps involved in designing a baseline processor along with

optimized versions that improve the performance over the
nonoptimized baseline implementation:

(i) profile the entire application,
(ii) identify bottlenecks of the algorithm,
(iii) combine existing instructions and create new func-

tions using TIE language,
(iv) repeat, until the desired speed is achieved.

5.2.1. Baseline Implementation. The baseline implementation
in this work will refer to a basic nonoptimized processor
capable of executing the GBSA algorithm. The main goal
of this baseline implementation is to allow the designer to
compare and understand the effect of different optimization
steps performed on performance. Before any optimization
could be applied, the GBSA algorithm (coded in C++) had
to be imported to Xtensa IDE and profiled using the ConnX
D2 Reference Core (XRC-D2SA) processor. As the tools
support open and read/write from/to file in the PC using the
standard C-library, both the rule set and trace files were read
directly from the host computer. With the environment for
testing final setup, the next step was to run and profile the
application. The results of the baseline implementation were
extracted from the profiler, which reported the total number
of clock cycles for the application. Also, the system generated
the processor clock frequency depending on the design and
the original processors architecture. The reported total time
was calculated by multiplying the clock period by the total
number of clock cycles.

5.2.2. Optimized 128-Bit Engine. As described earlier, the
GBSA packet classification algorithm is based on two main
blocks, preprocessing and classification, which both need to
be optimized. The primary design philosophy dictates that
small, simple, and frequently used operations (instructions)
should be aggregated and moved to hardware. A typical
new instruction is described using the TIE language and
then compiled. Moreover the TIE compiler also updates the
compiler tool chain (XCC compiler, assembler, debugger, and
profiler) and the simulationmodels (instruction set simulator
and the XTMP, XTSC, and pin-level XTSC system modeling
environment) to fully utilize the new proposed instructions.
The first obvious step to enhance the XRC-D2SA processor
is to increase the data bus bandwidth from 32 bits to 128
bits. This modification could enable the processor to run
both Single Instruction Multiple Data (SIMD) and Multiple
InstructionMultiple Data (MIMD) classes of parallel compu-
tational models.

(i) Preprocessing engine: based on the discussion in
Section 1 and contents of Table 1, when the IP address
is converted to a range format, the length of the
𝐼𝑃
𝑠𝑟𝑐

and 𝐼𝑃
𝑑𝑠𝑡

changes from 32 to 64 bits each.
Therefore, the total length of the 𝐼𝑃

𝑠𝑟𝑐
and 𝐼𝑃

𝑑𝑠𝑡
will

be 128 bits. The example introduced in Section 3.2
(that explains the preprocessing stage within GBSA)
clearly indicates that the original rule set (Step 1 in
Figure 5) is decomposed into three partitions (Step 2

14 International Journal of Reconfigurable Computing

32

32

32

32

O
ut

pu
t r

eg
ist

er
 (1

28
)

In
pu

t r
eg

ist
er

 (1
28

) 8

8

1

1

8

8

(low)

(high)

(low)

(high)

𝐼𝑃𝑆𝑟𝑐

𝐼𝑃𝑆𝑟𝑐

𝐼𝑃𝐷𝑠𝑡

𝐼𝑃𝐷𝑠𝑡

0–31

0–0

1–1

39–2

47–40

55–48

63–56

71–64

79–72

87–80

95–88

103–96

111–104

119–112

127–120
31–24

32–63

96–127

95–88

63–56

127–120

64–95

Figure 11: Preprocessing: partitioning rules based on their 𝐼𝑃
𝑠𝑟𝑐
/𝐼𝑃
𝑑𝑠𝑡
.

in Figure 5) based on the presence or absence of a
wild-card.
The architecture proposed in Figure 11 performs the
decomposition of the rule set into three partitions
and also generates the necessary addresses (Step 3
in Figure 5). This module accordingly processes the
high/low IP addresses (source/destination) of 128 bits
and generates the following information:

(a) the first two bits generated are necessary to dis-
criminate among the three produced partitions
(𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝐷𝑠𝑡
, 𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝑆𝑟𝑐
, and 𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝐺𝑒𝑛
).

The ASIP processor will utilize this information
to access the information within the tables,

(b) the corresponding addresses of the original
rules in the three newly created tables as demon-
strated by Step 3 in Figure 5 will also be gener-
ated. These addresses are used to point to the
contents of the memories (Mem 1, Mem 2, and
Mem 3 in Figure 6).

At this point, only the total number of rules (refered
to as “Size”) belonging to a cluster is generated by
the architecture introduced earlier in Figure 11. The
next step involves generating the starting address
of each cluster within the RuleList (Mem 4 in
Figure 6). Figure 12 demonstrates this process. The
proposed architecture in Figure 12 attempts to process

eight locations simultaneously. This operation emu-
lates memory allocation of space in Mem 4.

(ii) Classification engine: next, we will describe the over-
all architecture of the ASIP classification engine. Our
description is based on the classification example
introduced earlier in Figure 7.

Step 1. Since the incoming packet is used frequently until a
best-match rule is found, a better design strategy is to store
the incoming packet in a temporary register file. This will
make it more accessible to all instructions avoiding any extra
cycles to fetch the packet.

Step 2. Figure 13 shows the second step in classification for
the incoming packet. As the high byte for both IP source
and destination will be used as an address to point to the
three lookup tables, the custom design in Figure 13 uses
the stored packet to generate an address for the corre-
sponding table and reads the contents of the table. Three
instances of this function are required for each lookup
table (𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝐺𝑒𝑛
, 𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝑆𝑟𝑐
, and 𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝐷𝑠𝑡
). Each

instance will be responsible for generating the “ADR” and
“Size” fields that access the rules fromMem 4.

Step 3. Once a cluster has been identified correctly (as
described earlier in the example of Figure 7 in Section 3.3),
an efficient linear searchwithin the cluster should be initiated.
The search for the best-match rule inside the cluster involves
comparing the five dimensions of the “incoming packet”

International Journal of Reconfigurable Computing 15

Group address
generator module

128

Prev-ADR(32)IN

ADR

Next ADR(32)out

20

12
20

12
20

12
20

12
20

12
20

12
20

12
20

12

20

Mux
0

1

20

20

20

20

20

20

20

20

12832

128 128

ADR In reg1

reg1

In reg2

reg2
Out Out

 (a) Block of the module

(b) Internal architecture

Size

In
pu

t r
eg

ist
er

 2
 (1

28
)

In
pu

t r
eg

ist
er

 1
 (1

28
)

O
ut

pu
t r

eg
ist

er
 1

 (1
28

)
O

ut
pu

t r
eg

ist
er

 2
 (1

28
)

11–0 19–0 11–0

31–12

43–32

63–44

75–64

95–76

107–96

127–108

11–0

31–12

43–32

63–44

75–64

95–76

107–96

127–108

43–32

75–64

107–96

75–64

107–96

11–0

43–32

2 to 1

Mux
0

1
2 to 1

Mux
0

1
2 to 1

Mux
0

1
2 to 1

Mux
0

1
2 to 1

Mux
0

1
2 to 1

Mux
0

1
2 to 1

Mux
0

1
2 to 1

Figure 12: Group address generator (128-bit preprocessing engine).

(which is already stored in a temporary register) with all
rules belonging to the cluster.This process is computationally
expensive. Therefore, a new instruction (along with an
appropriate module) is developed to simultaneously match
the two rules with the stored packet. Figure 14 illustrates
how a match between the incoming packet with exist-
ing rules in the database will be performed. If a match
exists, either “Result bit1” or “Result bit0” will be set.
Figure 14(b) shows the I/O registers for the matching func-
tion.

5.2.3. Optimized 256-Bit Engine

(i) Preprocessing Engine. Since classification is consid-
ered to be the most important phase within packet
classification,we concentrated our effort in improving
the classification phase. Accordingly, the original

optimized 128-bit preprocessing engine described
earlier will be used in a 256-bit engine, as described
in the following.

(ii) Classification Engine.The 128-bit classification engine
described earlier (Figures 13 and 14) requires four
clock cycles to perform memory reads and another
four clock cycles to write to the internal registers.
This overhead can be further reduced by increasing
memory read bandwidth or increasing the data bus
width. Recall that the classification is basically a
matching operation between an incoming packet and
rules in the database.

(a) As each rule needs 208 bits (𝐼𝑃
𝑠𝑟𝑐
= 64 bits, 𝐼𝑃

𝑑𝑠𝑡

= 64 bits, 𝑃𝑜𝑟𝑡
𝑠𝑟𝑐
= 32 bits, 𝑃𝑜𝑟𝑡

𝑑𝑠𝑡
= 32 bits,

and Protocol = 16 bits), extending the width of
the bus from 128 to 256 bits (Figure 15) should

16 International Journal of Reconfigurable Computing

ADR/size module
reader

3232

ADR Size

(a) Block of the module

A
D

R
(3

2)
 32

VAddr

Lookup table
base address

16-bit incoming
packet

Si
ze

 (3
2)

12

20

31–0 11
–0

31
–1

2

31–20

19–0

31–12

11–0

Memdata ln 32

M
em

or
y

(1
28

∗
4

M
)

(b) Internal architecture

Figure 13: Group “address/size” access (128-bit classification engine).

enable the architecture to read an entire rule
from the memory.

(b) The speed of the matching module could be
further improved by forcing it to read one of
the two rules directly from memory instead
of reading the rule and then sending it to the
matching module.

(c) Moreover, the number of matches per iteration
of the loop can be increased to four instead of
two as shown previously in the 128-bit classifi-
cation engine.This enhancement can be accom-
plished by adding a second matching module.
Figure 16 illustrates the block diagram of the
entire matching step for four rules.
(1) The first module compares and saves the

result in a flag register, while the second
module compares, tests the previous result
from the flag register, and then generates
the final result.

(2) Figure 15 illustrates the internal architec-
ture of thematchingmodule.Thematching
function performs a direct memory read
for one rule, while accessing a second rule
from a temporary register. The first match-
ing function generated two results, namely,
“Flag1” and “Flag2”. The second matching
function will also match the incoming
packet with another two rules. The four
flags will be fed to a priority encoder to
generate the winning rule as shown in
Figure 16.

(d) Yet another improvement in the matching pro-
cess can be achieved by simultaneously reading
the addresses of four rules (belonging to a
cluster) that will be matched to an incoming
packet in each iteration. Figure 17 shows the
internal design of the four addresses generated.
These addresses are saved in four temporary
registers that are accessible to anymodule inside
the ASIP processor. Two of these addresses will
be used directly by the two matching functions
described earlier (Figure 16).

(e) The other two addresses are used in the new
module (Figure 18) that is responsible for direct
reading of rules from memory and storing the
results in temporary register which is used by
the matching function.

All the above enhancements, unfortunately, did not produce
substantial speedup (as it will be shown shortly) compared
to those based on the 128-bit engine, since the algorithm
is highly memory dependent. The memory dependency
introduced delays due to stalls in the pipeline.

5.3. Results. Figures 19 and 20 showcase the final results of
the ASIP processor implementation of the GBSA before and
after optimization for the 128-bit/256-bit engines. It is evident
from Figure 19 that preprocessing received improvement in
performance (3.5x speedup) after adding the new functions
as new instructions to the newly designed processor. Also,
expanding the data bus helps to increase the preprocessing
speed.

International Journal of Reconfigurable Computing 17

IPs (32) IPd (32) Ports (16) Portd (16) Protocol (8)

A
nd

(1
28

)
Ru

le
 I-

1
Ru

le
 I-

2

Ru
le

 II
-2

Ru
le

 II
-1

A
nd

Result bit0 Result bit1

Incoming packet

(1
28

)

32bit
32bit 32bit

32bit
32bit 16bit

16bit

16bit

10bit10bit

16bit

16bit

16bit
16bit
16bit

16bit

32bit
0–31

32–63
64–95
96–127

0–15
16–31
32–47
48–63
64–71
72–79

(≥)

(≥)

(≥)

(≥)

(≥)

(≤)

(≤)

(≤)

(≤)

(≤)

(a)

IPs (32)

IPd (32)

Ports (16)

Portd (16)

Protocol (8)

Matching function

128 128 128 128

32

Result

Registers file

R1-L R1-H R2-L R2-H

(b)

Figure 14: (a) Matching function of a packet simultaneously against two rules (128-bit classification engine) and (b) the external I/O of the
matching function (128-bit classification engine).

The classification speed achieved using the optimized
custom ASIP processors is on average 5.3x over the baseline.
This performance boost can be entirely attributed to the fol-
lowing: (a) a new matching function, (b) the direct memory
read, and (c) temporary values saved inside the register file
acting like a local cache.

6. RTL Hardware Implementation
Based on ESL

Thedesign of a pure RTL based hardware accelerator using an
Electronic System Level (ESL) language is a different kind of
approach of hardware and software design philosophies. An
ESL is typically a high-level language with many similarities
to software based languages, such as C, in terms of syntax,
program structure, flow of execution, and design methodol-
ogy. The difference from such software languages comes in

the form of constructs that are tailored to hardware develop-
ment design, such as the ability to write code that is executed
in parallel. This makes it convenient to translate a software
application into its RTL equivalent without having to start the
design from scratch. The higher level of abstraction afforded
by ESLs allows designers to develop an RTL implementation
faster than using pureVHDLorVerilog.However, the perfor-
mance of the resulting hardware is often less than that which
can be achieved using VHDL or Verilog where the designer
has (almost) complete control over the architecture of the
synthesized circuit. In addition, most C programmers should
be able to create effective ESL hardware designswithoutmuch
additional training at all. Instead of taking a long time to
master VHDL and Verilog, one can take advantage of the
long-standing and widespread foundation of C.

6.1. Handel-C Implementation (Tools). A hardware accel-
erator of the GBSA algorithm was implemented in RTL

18 International Journal of Reconfigurable Computing

IPs (32) IPd (32) Ports (16) Portd (16) Protocol (8)

A
nd

A
nd

Flag1

Incoming packet

32bit
32bit 32bit

32bit
32bit 16bit

16bit

16bit

10bit10bit

16bit

16bit

16bit
16bit

16bit

16bit

32bit
0–31

32–63
64–95

96–127

128–143
144–159
160–178
176–191
192–199
224–231

(≥)

(≥)

(≥)

(≥)

(≥)

(≤)

(≤)

(≤)

(≤)

(≤)

Flag2

Rule address
Te

m
po

ra
ry

 (2
56

)

Memdata
ln 256

32
VAddr

M
em

or
y

(2
5
6
∗
4

M
)

Figure 15: The internal architecture of the matching function (256-bit classification engine).

Flag1

Flag2

0
1
2
3

encoder
4 to 2

1
1
1
1

2Priority Result
1st matching

2st matching

Figure 16: The block diagram of the overall matching step.

using Mentor Graphics Handel-C [29].TheMentor Graphics
Development Kit Design Suite v5.2.6266.11181 facilitated a
thorough debugging toolset, the creation andmanagement of
several output configurations, the ability to build simulation
executables, hardware-mappable EDIFs, or VHDL/Verilog
files from the Handel-C source files, file I/O during sim-
ulation, and the ability to include custom-built scripts for
specific target platforms. When building an EDIF, Handel-
C will also produce log files that display timing, size, and
resources used for the design. In our experiments, Xilinx ISE
v12 was used to map the generated HDL files from Handel-C
to Virtex-6 (xc6vlx760) FPGA chip. The synthesis and place
and route reports were both used to identify the critical-path
delay or the maximum running frequency.

6.1.1. Techniques and Strategies. Handel-C provides a file
I/O interface during simulation, which is used to feed test

bench files. For this implementation, preprocessing of all
test benches was performed by a general purpose processor
(GPP), well in advance, using a pre-processor application
written in C. Accordingly, the main focus of the RTL design
was solely targeting classification. Handel-C also provides
unique memory structures in RAMs and ROMs. These
modules have fast access times, but the downside is that
multiple branches within the designed classification engine
cannot access RAM concurrently. A side effect of this is that
as parallelism is exploited (and there is quite a bit of this in a
highly optimized RTL design), and special caremust be taken
to ensure that only a single branch is accessing RAMs.

Handel-C debugging mode allows for examining the
number of cycles required by each statement during simula-
tion. This is a good metric, when coupled with the critical-
path delay for the design, for gaining an overall sense of
the timing. Both the critical-path delay and the cycle count
also serve as metrics for improvement when it comes to
optimization in any Handel-C design.

6.1.2. Handel-C Optimization. Optimization in Handel-C is
quite different from an ASIP based approach. The technique
of extracting hardware fromblocks of code serves no purpose
for the designer since Handel-C implementations produce
RTL code (VHDL). Instead, the key method of optimization
is to exploit the following properties from a software design:
a single statement takes a clock cycle; the most complicated
statement dictates the critical-path delay and, therefore, the
clock frequency; statements can be executed either sequen-
tially or in parallel branches; and special memory structures
can be used for fast memory access.

International Journal of Reconfigurable Computing 19

Direct memory reading
of four rules in the
same time module

Output register

32

(a) Block of the module

Rule 0 address

Rule 1 address

Rule 2 address

Rule 3 address

32
VAddr

RuleList address Cluster address Rule counter
“0000” “00”

28

32

30

Position

27–0

127–0

29–0

++

Memdata ln128

M
em

or
y

(2
5
6
∗
4

M
)

(b) Internal architecture

Figure 17: Simultaneous direct memory read for four rule addresses.

Direct memory
reading module

256

Temporary

(a) Block of the module

32

VAddr

Rule address (32)

Te
m

po
ra

ry
 (2

56
)

255–0

M
em

or
y

(2
5
6
∗
4

M
)

Memdata ln 256

(b) Internal architecture

Figure 18: A direct memory read for an entire rule.

The following steps will explain the different optimization
phases taken when mapping the GBSA algorithm into hard-
ware.

(1) Baseline Design (Original). The GBSA original code
was imported to the Handel-C development environ-
ment. The code is adapted for RTL design. Memories
were defined instead of arrays, a general clock was
declared for the entire system, all dynamic variables
were replaced by a static declaration, and channels
were introduced for external data exchange. The
remaining C-code was kept unchanged with minor
modifications. The Baseline Design will be used as
a baseline reference model that can be compared to
optimized versions of the algorithm.

(2) Fine Grain Optimization (FGO). The first step taken
to improve the original Handel-C implementation

of the GBSA was to replace all “For” loops within
the design to “do while” loops. “For” loops take a
single cycle to initialize the counter variable, a cycle
for each sequential statement within the loop body,
and a cycle to increment the counter variable. “Do
while loops” aremuchmore efficient in terms of cycles
consumed since one can place the counter increment
within the loop body and run it concurrently with
the other statements. Algorithm 2 illustrates the code
conversion of the “For” to the “Do While” loops
using the Handel-C Par statement. The “For” loop in
the code example of Algorithm 2 consumes 21 clock
cycles, yet the same code, when implemented in “Do
while” loops, consumes 11 clock cycles. The second
important FGO step is to combine several lines
of code together and parallelize them. Algorithm 3
shows the code conversion from sequential to parallel

20 International Journal of Reconfigurable Computing

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

The rule size

Preprocessing time (ACL)

Ti
m

e (
m

s)

0.1K 1K 5K 10K

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

Ti
m

e (
m

s)

Preprocessing number of clock (FW)

0.1K
The rule size

1K 5K 10K

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Ti
m

e (
m

s)

Baseline

Preprocessing number of clock (IPC)

The rule size
0.1K 1K 5K 10K

TIE-128 bit
TIE-256bit

(c)

Figure 19: GBSA’s ASIP preprocessing implementation: timing result.

statements. The original sequential code requires five
clock cycles, yet the parallel code needs only a single
clock cycle.

(3) Coarse Grain Optimization (CGO). One of the key
methods of improving performance of the GBSA
algorithm is to divide the classification phase into
several stages and pipeline the trace packets through
them. This is a rather simple task, as long as blocks
that are required to be sequential, such as “For” loops,
are kept intact. The key construct required to build
an efficient, effective pipeline scheme is the channel.
In Handel-C, channels are utilized to transfer data
between parallel branches, and this is required to
ensure that data processed in one stage of a pipeline
is ready for use in the next stage. Channels also
provide a unique type of synchronization: if a stage

in the GBSA is waiting to read a value from the
end of a channel, it will block its execution until the
data is received. This not only makes the pipeline
well synchronized, but it also improves efficiency
in terms of the number of cycles used to complete
classification. Figure 21 illustrates a timing diagram
for the pipelined implementation of the GBSA. Along
the 𝑦-axis there exists a pipeline stage. Stage 3 in
particular is divided into three substages due to the
following reasons:

(i) the GBSA algorithm searches in three different
tables, namely, 𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝐺𝑒𝑛
, 𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝐷𝑒𝑠𝑡
, and

𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃
𝑆𝑟𝑐
, sequentially,

(ii) the complexity of the internals merits the divi-
sion and the substages need to be executed
sequentially to produce accurate results.

International Journal of Reconfigurable Computing 21

 0.01

 0.1

 1

 10

 100
Ti

m
e (

m
s)

Classification time (ACL)

The trace packets size
1K 10K 50K 100K

(a)

 0.01

 0.1

 1

 10

 100

Ti
m

e (
m

s)

Classification time (FW)

The trace packets size
1K 10K 50K 100K

(b)

 0.01

 0.1

 1

 10

 100

Ti
m

e (
m

s)

Classification time (IPC)

Baseline

The trace packets size
1K 10K 50K 100K

TIE-128 bit
TIE-256bit

(c)

Figure 20: GBSA’s ASIP classification implementation: timing result.

/∗ For Code∗/

{
MyRam[i]=i;
}

/∗ Do While Code∗/

do{
par{

MyRam[i]=i;
i++; }
} while(i <

for(i=0;i < 10;i++)
i=0;

10);

Algorithm 2: A FOR to Do-While conversion code.

The “Coarse Grain Optimization” stage is a combina-
tion of the “Fine Grain” and “Pipelining” techniques
described above.

(4) Parallel Coarse Grain Optimization (PCGO).The final
strategy employed to improve the GBSA was to
divide the memory space of the “𝐿𝑜𝑜𝑘𝑢𝑝𝐼𝑃

𝐺𝑒𝑛
” into

odd and even banks and then split the algorithm
itself into a four-parallel-pipelined searching engine,
as illustrated in Figure 22. Accordingly, the GBSA’s
preprocessing stage was altered to generate four input
rule files, and the RAMwas also partitioned into four
segments. While one would expect this to maintain
the samememory size as the normal pipelinedmodel,

22 International Journal of Reconfigurable Computing

/∗ Ungroup Code∗/

Trace IPs = packet\\
Trace IPd = (packet\\ <
Port Src = (packet\\ <
Port Des = (packet\\ <
Protocol = packet< −

/∗ Group Par Code∗/
par{

Trace IPs = packet\\
Trace IPd = (packet\\ < −
Port Src = (packet\\ < −
Port Des =(packet\\ < −
Protocol = packet< −
}

40) 40)
24) 24))

)8)
8 8

8

32;−32;
16;
16;

−16;
−16;

72; 72;

Algorithm 3: A group code parallelism.

additional resources had to be used in order to
account for additional channels, counter variables,
internal variables for each pipeline, and interconnect-
ing signals for each pipeline. The design diverges into
four pipelines once a trace packet has been read in.
Each pipeline runs the packet through and attempts to
classify it. The pipelines meet at a common stage, and
at each cycle the algorithm checks if a match has been
found in any of the four memory spaces. A priority
scheme allows only a single pipeline to write a result
at any given time. The IP source/IP destination odd
search engine has the highest priority to terminate
the search and declare a match found; on the other
hand, the IP destination search engine has the lowest
priority and cannot terminate the search until all
other search engines complete their task. As memory
is further divided, the total amount of resources must
be increased for accuracy, but the gains in terms of
speed far outweigh the additional resources used. In
the next subsection, a more detailed explanation of
the specific trade-offs and trends is presented.

6.1.3. Results. Figures 21 and 22 illustrate the execution
models for both the basic pipelined implementation, “Coarse
Grain Optimization (CGO)” of the GBSA, and the pipelined
implementation with a divided memory space that is, the
“Parallel CoarseGrainOptimization (PCGO).” It is clear from
the architectures that both models have a best-case time of
1 cycle per packet (which is constant). The “Coarse Grain”
pipelined version has a worst-case time of the sum of the
maximumgroup size in the three tables cycles, while “Parallel
Coarse Grain” has a worst-case time of the maximum group
size in one of the three tables cycles. Both designs are
incapable of processing one packet per cycle with large rule
sets, but continued memory division should lower the worst-
case time in future endeavors. Figure 23 shows the result of
all four implementations of GBSA. Since the Pipeline itself
has unbalanced stages, pipelining alone did not generate
a substantial boost in speed. The largest contributors to
speedup were the “Fine Grain” and the “Parallel Coarse
Grain” approaches. Converting all “For” loops into “While”
loops and grouping all the independent steps to one group
“Fine Grain” resulted in an average acceleration of 1.52x for
the 10 K rule set size. The “Coarse Grain,” on the other hand,
contributed only an additional 1.05x speedup over the Fine

Grain version and, overall, a 1.6x speedup from the baseline
Handel-C implementation. On the other hand, the “Parallel
Coarse Grain” approach achieves a 1.67x acceleration over the
“Coarse Grain” revision and, overall, a 2.6x speedup over the
baseline Handel-C implementation.

Resource usage in terms of equivalent NAND gates, Flip
Flops, and memory are presented in Table 4.

It is clear from Table 4 that the “Parallel Coarse Grain”
implementation with four classifiers consumes almost 1.03
times more NAND gates than the “Coarse Grain” architec-
ture. The same number of memory bits is used by the two
designs, and an additional 1.11 times more Flip Flops were
required for the “Parallel Coarse Grain” approach. It is also
interesting to note that the increase in resource consumption
of Flip Flops (comparing Baseline to Fine-Grained imple-
mentation) tends to be larger than the increase in the number
of NAND gates used for both implementations. The main
difference between the Baseline implementation and the
Fine-Grained implementation is that the latter required the
saving of some temporary results to speedup the classification
phase, and therefore it is quite natural that the increase was
more dramatic in the number of Flip Flops versus the logic
used.

6.2. A Hardware Accelerator Using Impulse-C. Impulse-C is
yet another ESL flow that supports the development of highly
parallel, mixed hardware/software algorithms and applica-
tions. It extends ANSI C using C-compatible predefined
library functions with support for communicating process
parallel programming models. These extensions of the C
language are minimal with respect to new data types and pre-
defined function calls; this allows multiple parallel program
segments to be described, interconnected, and synchronized
[30].

6.2.1. Tools and Equipment. TheImpulseCoDeveloperAppli-
cation Manager Xilinx Edition Version 3.70.a.10 was used to
implement the GBSA algorithm. The Impulse CoDeveloper
is an advanced software tool that enables high-performance
applications on FPGA based programmable platforms. In
addition to the ability to convert a C based algorithm to
HDL, CoDeveloper Application Manager also provides the
CoValidator tools for generating all necessary test bench files.
These testing files can be run directly under the ModelSim
hardware simulation environment.TheCoValidator provides

International Journal of Reconfigurable Computing 23

Read the packet from input portStage one

Generate the indexes for the three tables
from packet header values Stage two

Search inside
the

for matching

Stage three

Stage four there is not match

Stage five
Decrement the counter of the packets

by one

Match
found

Yes

No

Match
found

Yes

No

Match
found

Yes

No

size in all tables

LookupIPGen

Search inside
the

for matching
LookupIPSrc

Search inside
the

for matching
LookupIPDst

Produce the matching rule number or −1 if

1 to 3 ∗ max group

Number of cycles: 1

Number of cycles: 1

Number of cycles: 1

Number of cycles:

Number of cycles: 1

Figure 21: Coarse Grain Optimization of the Handel-C (Pipelining).

simulation and HDL generation for design test and verifica-
tion.

6.2.2. Techniques and Strategies. All of the test benchmark
files were preprocessed on a regular PC in advance using a
preprocessor application written in C. Only the classification
part of the GBSA is considered and mapped to the FPGA,
due to its high importance and frequency of use. (Mapping
preprocessing as a hardware accelerator on-chip would waste
resources, since it is a one-time task.) Figure 24 depicts the
overall GBSA Impulse-C system organization.

The CoDeveloper tool is used to feed the system with
the preprocessed rule set and test packets. The Impulse-C
development tools generate all necessary files to synthesize
and simulate the project, using ModelSim. ModelSim allows
one to examine the required number of clock cycles to classify
the test packets during simulation.

A quick method for examining design performance is
to employ the Stage Master Explorer tool, a graphical tool
used to analyze the GBSA Impulse-C implementation. It
determines, on a process-by-process basis, how effectively
the compiler parallelized the C language statements. An
estimation of the critical-path delay for the design associated
with C code and the number of clock cycles is used to get
an overall judgment of the system timing and performance
during the implementation phase. Both the critical-path
delay and the cycle count play an important role in optimizing
the Impulse-C design.

In our experiments, Xilinx ISE v12 was used to map the
generated HDL files to the Virtex-6 (xc6vlx760) FPGA chip.
The synthesis and place and route reports were both utilized
to identify the critical-path delay. ModelSim SE 6.6 was also
employed to simulate and accurately count the number of
clock cycles needed for each benchmark.

24 International Journal of Reconfigurable Computing

Read the packet from input port

Generate the indexes for the three tables
from packet header values

Search inside
the

for matching
in the odd
location

there is no match

Match
found

Search inside
the

for matching

Yes

No

Search
inside the

for matching

Match
found

Yes

No

size in all tables

Search inside
the

for matching
in the even

location

Terminate all
other search

phases

Match
found

Yes

No

Match
found

Yes

No

Terminate all
other search

phases

Terminate all
other search

phases

Terminate all
search

Stage one

Stage two

Stage three

Stage four

Stage five

“S
im

ul
ta

ne
ou

s s
ea

rc
h”

Decrement the counter of the packets
by one

LookupIPGen

LookupIPGen

LookupIPSrc

LookupIPDst

Produce the matching rule number or −1 if

1 to max group

Number of cycles: 1

Number of cycles: 1

Number of cycles:

Number of cycles: 1

Number of cycles: 1

Figure 22: Parallel Coarse Grain Optimization of the Handel-C implementation.

Figure 25 illustrates the main blocks of the GBSA
Impulse-C implementation, which include IndexGen, Search
and Match, and WinGen.

6.2.3. Impulse-C Optimization. Although both Impulse-C
and Handel-C are Electronic System Level design based lan-
guages, their implementation, optimization, and objectives
are quite different. Handel-C is more of a statement level
optimization oriented language, while Impulse-C is more
system and streaming level optimization oriented. Moreover,
Impulse-C is not built on the assumption of a single clock per
statement language, as it is the casewithHandel-C, yet it deals
with more block based optimization.

Impulse-C provides three main pragma(s) (PIPELINE,
UNROLL, and FLATTEN) to improve the performance
of the block of code and loops. Using the Stage Master
tool in addition to the optimization pragma provides an

efficient method to improve the target design. Also, Impulse-
C designs take advantage of dual port RAM optimization,
which enables the design to simultaneously access multiple
locations, thus reducing the total number of clock cycles.

In general, optimization applied can be classified into
(a) Fine Grain and (b) Coarse Grain, as described in the
following.

(1) Baseline Implementation (Original). The original
GBSA C-code was mapped to the CoDeveloper with
the following minor modifications:

(a) adding the stream reading/writing from/to the
buses,

(b) changing the variables to fixed sizes,
(c) collapsing all functions to one main function,
(d) converting all dynamic arrays to local static

arrays.

International Journal of Reconfigurable Computing 25

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45
Ti

m
e (

m
s)

Classification time ACL (ms)

The trace packets size
1K 10K 50K 100K

(a)

Ti
m

e (
m

s)

 0

 5

 10

 15

 20

 25

 30

 35
Classification time FW (ms)

The trace packets size
1K 10K 50K 100K

(b)

 0

 5

 10

 15

 20

 25

 30

 35

 40

Baseline
Fine-Grained

Coarse-Grained
Parallel-Coarse-Grained

Ti
m

e (
m

s)

Classification time IPC (ms)

The trace packets size
1K 10K 50K 100K

(c)

Figure 23: GBSA’s Handel-C implementation: classification timing result.

Table 4: Frequency and device utilization of the GBSA based on Handel-C.

Specification NANDs FFs Memory bits Maximum frequency
Baseline 330657567 702 165313536 141.997MHz
Fine-Grained 330665160 863 165313536 142.013MHz
Coarse-Grained 330667259 1090 165313536 153.614MHz
Parallel-Coarse-Grained 340667259 1207 165313536 157.914MHz

The baseline implementation is used as a baseline
reference model for the sake of comparison with
optimized implementations.

(2) Fine Grain Optimization (FGO). The initial step to
improve the original Impulse-C implementation of
the GBSA was based on applying 𝑃𝐼𝑃𝐸𝐿𝐼𝑁𝐸 and
𝐹𝐿𝐴𝑇𝑇𝐸𝑁 pragmas, individually, to all the inner
loops of the baseline implementation. This approach
tends to convert the generated HDL block from
sequential to either pipelined or parallel block. The

selection between 𝑃𝐼𝑃𝐸𝐿𝐼𝑁𝐸 and 𝐹𝐿𝐴𝑇𝑇𝐸𝑁 prag-
mas can be performed via the Stage Master explo-
ration tool.Themain optimization techniques applied
in FGO are as follows.

(i) FGO-A: the first optimization step involves
converting the “For” loops to “DoWhile” loops,
similar to Handel-C, with the exception of
replacing the 𝑝𝑎𝑟 statement with 𝐹𝐿𝐴𝑇𝑇𝐸𝑁 as
depicted inAlgorithm 4. Although the Impulse-
C compiler converts different types of loops to
“do while” loops when it generates the HDL file

26 International Journal of Reconfigurable Computing

Pre-processing Classification

FPGA

Impulse-C

Benchmark
files

Rule set files

Benchmark
files

Trace files

List of winning
rules

Microblaze/desktop

General purpose processor

C++ code

Figure 24: An overview of Impulse-C system (preprocessing and classification).

Read packet from input stream Stage one

Generate the indexes for the three tables
from packet header values

Stage two

Read the stream one after the other if the
reading value is zero

Stage three

Stage four

Stage five

Stage six

Extract the first byte of IP source and
destination and concatenate them

Generate the winner rule

IndexGen

Search and
Match

WinGen

Match
found

for matching

No

Search inside the

Match
found

Yes

No

Match
found

No

Yes

Yes

Stage eight

Stage seven

Stage nine

IP source
destination

IP source

IP
destination

Stage ten

Stage eleven

Search inside the LookupIP𝑆𝑟𝑐

Search inside the LookupIP𝐺𝑒𝑛 for matching

LookupIP𝐷𝑠𝑡 for matching

Figure 25: The GBSA Impulse-C classification stages.

International Journal of Reconfigurable Computing 27

/∗ For Code∗/

{
MyRam[i]=i;
}

/∗ DoWhile Code∗/

{
♯ pragma CO FLATTEN

MyRam[i]=i;
i++;
if(i <

}

for(i=0;i < 10;i++)
i=0;
while(1)

10)break;

Algorithm 4: FGO-A: a loop optimization using 𝐹𝐿𝐴𝑇𝑇𝐸𝑁 pragma.

while(i<=
{
♯ pragma CO FLATTEN
/∗ Adding one location from memory ∗/
Sum = Sum +MyRam[i];

}

while(i<=
{
♯ pragma CO FLATTEN
/∗ Adding two locations from memory ∗/
Sum = Sum +MyRam[i]+ MyRam[i |

}

Sum = 0; Sum = 0;
10)10)

i = i + 1;
1];

i = i + 2;

i = 0; i = 0;

Algorithm 5: FGO-B: dual port RAM code optimization.

code, adding the 𝐹𝐿𝐴𝑇𝑇𝐸𝑁 pragma tends to
improve the loop execution time.

(ii) FGO-B: the second optimization step takes
advantage of the distributed dual port RAM so
that multiple locations can be accessed simulta-
neously. Algorithm 5 illustrates the usage of dual
port RAM in the code. Applying the dual port
RAM optimization techniques tends to reduce
the needed clock cycles sharply; however, it
tends to increase the critical-path.

(iii) FGO-C: a groupof instructions that run sequen-
tially can be aggregated together where no
dependency or partial results are required.
Adding curly brackets to the set of instructions
can combine them. Also, a 𝐹𝐿𝐴𝑇𝑇𝐸𝑁 pragma
can be added to make the system generate
hardware that runs in parallel.

(iv) FGO-D: the final optimization step performed
is the adaptation of streams’ width and depth
which can have a huge influence on system
performance. This effect is prominent when the
stream is reading or writing inside the pipeline
loops. In this case, the depth of the stream has
to be at least one more than the pipeline stages
number; otherwise the stream will become a
system bottleneck. The stream width affects
the reading of the date size per cycle, which
subsequently affects the total number of clock
cycles that is needed.

(3) Coarse Grain Optimization (CGO). The main goal
of CGO is to divide the entire architecture into
several modules that should operate simultaneously
as seen in Figure 26. The system is divided into
five independent blocks (processes) which operate in
parallel and communicate through streams. The five
submodules, as seen in Figure 26, are the IndexGen,
SrcDest Search andMatch, Source Search andMatch,
Destination Search and Match, and WinGen.

(i) The IndexGen subsystem generates the address
of the three memories (as shown previously in
Figure 6). The three addresses combine into a
first stream (namely, ADR1) of width 48 bits.
Also the three sizes of the groups combine
together into a second stream (namely, Size1) of
width 48 bits.

(ii) The SrcDest Search and Match reads the two
generated streams (ADR1, Size1) and writes the
remaining address and sizes to another two
streams, namely, ADR2, Size2 of width 32 bits.

(iii) TheSource Search andMatch readsADR2, Size2
streams and writes the remaining address and
sizes to yet another two streams, namely ADR3
and Size3 of width 16 bits.

(iv) TheDestination Search andMatch reads ADR3,
Size3 streams.

The designed Search andMatch modules will operate
simultaneously to generate the candidate winning
rule number (if a match exists) via three streams

28 International Journal of Reconfigurable Computing

WinGen

Output 1 Output 3

Output 2

Input

Size1IndexGen

ADR1

Packet1

Packet3Packet2

Input

Size2

ADR2

Size3

ADR3

Input
stream 1 stream 2 stream 3 stream 4

Input

SourceSrcDest
Search and Match Search and Match

Output

Destination
Search and Match

Width 48bit
depth 16

Width 32bit
depth 16

Width 16bit
depth 16

Width 16bit
depth 16

depth 16
Width 128 bit

depth 16
Width 128 bit

depth 16
Width 128 bit

depth 16
Width 128 bit

depth 16
Width 128 bit

depth 16
Width 128 bit depth 16

Width 128 bit

Figure 26: The GBSA Impulse-C CGO based implementation.

(output1, output2, and output3).TheWinGenmodule
will decide upon which rule will be the best match for
the incoming packet.
The high number of streams used in the CGO system
introduced extra delays in the system which led to
deterioration in speedup achieved. The deficiency in
the CGO proposed architecture can be attributed to
the following reasons:

(i) the system cannot be partitioned into equally
sized parts (unbalanced pipeline),

(ii) overhead delay of writing/reading to/from
streams,

(iii) the search is performed within three separate
tables sequentially.

The main difference between the Handel-C channels
and Impulse-C stream is that the Handel-C can
read/write to the channel without adding an extra
clock cycle, yet Impulse-C needs one clock cycle to
write to the stream and another clock cycle to read
from it. Therefore, CGO is appropriate for Handel-C
and inappropriate for Impulse-C.

6.2.4. Results. Figure 27 illustrates the total timing results
for both the baseline and FGO implementations of the
GBSA. The FGO achieved an average acceleration of 6x
over the baseline implementation, although the latter was
almost 7x higher than FGO in terms of clock cycles. Yet

the increase in its critical-path delay was less than 1.15x.
Table 5 lists the resources utilization of the baseline and FGO
implementations. It is clear that FGO consumes almost twice
as many resources as compared to the baseline. The sharp
increase in resource consumption is attributed to the loop
pipeline, flattened group of instructions, bus size increase,
and usage of dual port memory.

7. Discussion and Analysis of Results

Themost interesting parameters to consider when examining
the effectiveness of any implementation of a packet classifica-
tion algorithmare classification time, preprocessing time, and
memory usage. Among the three, the one of least concern is
preprocessing time since it is performed once within a larger
continuous process. A shorter preprocessing time implies
a shorter downtime for the system and, overall, a more
versatile, resilient, and effective classification procedure.

7.1. Hardware Implementations. The pure software imple-
mentation on a desktop demonstrated excellent performance
results but at the expense of an expensive general pur-
pose processor with several dedicated ALUs and memory
resources. A general purpose processor is generally not
practical for anything but a server implementation, and in
that respect is not directly comparable to the embedded
alternatives. However, the pure software implementation
is perhaps the most flexible in terms of debugging and
modification.

International Journal of Reconfigurable Computing 29

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180
Ti

m
e (

m
s)

Classification time ACL (ms)

The trace packets size
1K 10K 50K 100K

(a)

 0

 20

 40

 60

 80

 100

 120

Ti
m

e (
m

s)

Classification time FW (ms)

The trace packets size
1K 10K 50K 100K

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

Ti
m

e (
m

s)

Classification time IPC (ms)

Baseline
Fine-Grained

The trace packets size
1K 10K 50K 100K

(c)

Figure 27: GBSA’s Impulse-C implementation: classification timing result.

Table 5: Impulse-C design specification.

Specification Slice Reg Slice LUTs LUTs (logic) LUTs (memory)
Baseline 1176 1644 1598 46
Fine-Grained 3383 2878 2878 0
Specification LUT-FF-Pairs Unique-Control-Sets Number-of-IOs Clock-Period (ns)
Baseline 2233 30 73 4.587
Fine-Grained 5316 65 169 5.282

The alternative embedded implementations each have
their own specific advantages. The ASIP implementation
with a modified data path and instruction set utilizes an
Application Specific Processor known as the ConnXD2 Ref-
erence Core, which allows such a design to have some degree
of flexibility. Several applications, if a design is ambitious
enough, couldwork in tandem in this structure using runtime
configuration. Perhaps a client would prefer flexibility, for
example, to run their GBSA algorithm, as well as a firewall in
quick succession on the same system. This implementation

can be easily mapped to an Application Specific Integrated
Circuit (ASIC) to achieve faster speed as compared to the
pure RTL version written in Handel-C and Impulse-C which
are usually mapped to FPGAs.

Both RTL implementations can be mapped onto FPGAs,
but the implementations would be the most cost-effective
for translation into ASIC, especially considering that it is
a single module. In addition, the RTL implementations are
much more simple to pipeline, due to its lack of interaction
with a software component.

30 International Journal of Reconfigurable Computing

Table 6: Performance achieved in terms of preprocessing (rule/sec).

Benchmark Preprocessing (rule/sec)
Desktop ASIP Speedup (x)

ACL (10K) 6,001,875.00 7,946,153.76 1.32
FW (10K) 6,001,875.00 8,234,708.98 1.37
IPC (10K) 3,201,000.00 8,694,129.12 2.72
Average 5,068,250.00 8,291,663.95 1.64

Table 7: Performance achieved in terms of classification
(packet/sec).

Benchmark Classification (packet/sec)
Desktop Impulse-C Handel-C ASIP

ACL (10K) 504,945 4,017,014 4,566,753 8,616,898
FW (10K) 568,944 5,514,377 5,525,460 11,162,983
IPC (10K) 475,550 3,843,463 4,036,393 8,023,022
Average 516,480 4,458,284 4,709,536 9,267,634

The key difference in design philosophy here is that
optimizations in Handel-C occur as the result of changing
the way in which one writes code, as opposed to ASIP where
the designer finds hot spots in the form of bottlenecks.
Both are forms of hardware/software codesign in general, but
they each ultimately take different paths and have different
advantages.

7.2. Overall Comparison. Tables 6 and 7 summarize the
performance obtained via different implementations for pre-
processing (in terms of rule/sec) and classification (in terms
of packets/sec).

Table 8 along with Figure 28 presents a comparison of the
GBSAalgorithm running ondifferent platforms. Based on the
results obtained we can conclude the following.

(1) A desktop (32-bit WinXP running on Xeon 3.4GHz
with 2G RAM) with the vast resources and power
produces the slowest classification time.

(2) ASIP (894-923MHz with 4 MB DRR): the ASIP
system results in a substantial classification speedup
as compared to all the other designs.

(3) Pure RTL using ESL:

(i) Handel-C: the pure RTL nature of this design
makes it the second fastest in terms of classifi-
cation time. In addition, it also has more rooms
for optimization, and this has been thoroughly
shown through its various revisions. The pure
RTL in terms of “Parallel Coarse Grain” imple-
mentation achieved on average 9.08x speedup
over the desktop approach,

(ii) Impulse-C: the means by which Impulse-C
translates the C-code to HDL making it a
suitable language for the GBSA. The Impulse-C
FGO based implementation achieves a similar

speed to that achieved by the PCGO using
Handel-C.However, the nature of the sequential
search of the GBSA had a negative effect on
Coarse-Grain implementation.

7.3. Comparison with Existing Hardware Accelerators for
Packet Classification. As mentioned in Section 2 several
hardware accelerators have been developed in the past few
years. However, it is important to remind the reader that it
is difficult to compare our proposed hardware accelerators to
those published in the literature for the following reasons.

(1) Most previous approaches tend to utilize Hardware
Description Languages in the form of VHDL which
leads to an unfair comparison with ESL based
approaches such as Handel-C and Impulse-C.

(2) Hardware accelerators for packet classification in the
literature are based on algorithms that are different
from the GBSA algorithm. For example CAM based
approaches can only accommodate up to 1 K rules
whereas the GBSA can accommodate any size 1 K,
10 K, and 100K.

(3) Results in the previous publications are based on
benchmarks that are different from the benchmarks
used by the authors. Unlike some packet classification
algorithms, the GBSA can be used for all types of
benchmarks (ACL, FW, and IPC) and even those that
have high overlapping regions as explained in the
paper.

However, for the sake of completeness we attempt to include
a table that compares some of the previous work with our
current proposed approach. Table 9 shows a comparison of
the different GBSA based hardware implementations (ASIP,
Handel-C, and Impulse-C) with some hardware accelerators
published in the literature. It is very clear from the table that
the TCAM [14] based implementation achieves the highest
throughput. However, TCAM based approaches suffer from
very high power dissipation and can only support a fewer
number of rules. A fair comparison can be made between the
GBSA ASIP implementation with [28] since both are imple-
mented using the same platform.TheGBSA implementations
based on Handel-C and Impulse-C are comparable to [19]
even though the latter was written in VHDL.

8. Conclusion and Future Work

In this paper, an efficient and scalable packet classification
algorithm, GBSA, was implemented in both software and
hardware and described in detail. The GBSA has excel-
lent classification time, and preprocessing time, and its
memory needs are moderate. The classification speed of
GBSA is not affected by increasing the rule set and the
number of wild-card rules in the classifier. The proposed
algorithm was evaluated and compared to state-of-the-art
techniques such as RFC, HiCut, Tuple, and PCIU using
several benchmarks. Results obtained indicate that GBSA
outperforms these algorithms in terms of speed, memory

International Journal of Reconfigurable Computing 31

Table 8: Classification time and speedup achieved.

Benchmark Desktop Impulse-C Handel-C ASIP
Time (ms) Time (ms) Speedup (x) Time (ms) Speedup (x) Time (ms) Speedup (x)

ACL (10K) 192.1 24.15 7.96 21.24 9.04 11.26 17.07
FW (10K) 163.9 16.91 8.08 16.88 8.49 8.35 16.87
IPC (10K) 190.6 23.58 9.69 22.45 9.71 11.26 19.62
Average 182.2 21.55 8.58 20.19 9.08 10.3 17.85

 0.01

 0.1

 1

 10

 100

 1000

Ti
m

e (
m

s)

Classification time ACL (ms)

The trace packets size
1K 10K 50K 100K

(a)

 0.01

 0.1

 1

 10

 100

 1000

Ti
m

e (
m

s)

Classification time FW (ms)

The trace packets size
1K 10K 50K 100K

(b)

 0.01

 0.1

 1

 10

 100

 1000

Ti
m

e (
m

s)

Classification time IPC (ms)

Desktop
Impulse-C

Handel-C
ASIP

The trace packets size
1K 10K 50K 100K

(c)

Figure 28: GBSA: overall comparison of the classification time.

usage, and preprocessing time. Furthermore, three hard-
ware accelerators were presented in this paper, along with
results analysis. Results obtained indicate that ESL based
approaches using Handel-C and Impulse-C achieved on
average 9x speedup over a pure software implementation
running on a state-of-the-art Xeon processor. An ASIP based

implementation on the other hand outperformed the RTL
hardware accelerators and achieved a speedup of almost
18x. In our future work, we will attempt to further improve
the performance of the GBSA by using dedicated hardware
accelerators (VHDL) for the classification phase and using
other ESL languages such as (AutoESL). Moreover, we will

32 International Journal of Reconfigurable Computing

Table 9: GBSA: comparison with hardware based packet classifica-
tion accelerators.

Implementation Language Throughput Platform
Xtensa [28] TIE 2.1 Gbsp ASIP
2sBFCE [19] VHDL 1.87Gbps FPGA
DCFL [14] VHDL 16Gbps TCAM
GBSA Xtensa TIE 3Gbps ASIP
GBSA ESL I Handel-C 1.5 Gbps FPGA
GBSA ESL II Impulse-C 1.4Gbps FPGA
HyperCuts [24] VHDL 3.41 Gbps FPGA

also attempt to verify the functionality of the GBSA with the
IPv6.

References

[1] D. Joseph, Packet classification as a fundamental network prim-
itive [Ph.D. thesis], EECS Department, University of California,
Berkeley, NC, USA, 2009.

[2] S. S. F. Baboescu and G. Varghese, “Packet classification for core
routers: is there an alternative to CAMs?” in Proceedings of the
Conference of the IEEE Computer and Communications, vol. 1,
pp. 53–63, April 2003.

[3] O. Ahmed, K. Chattha, and S. Areibi, “A hardware/software co-
design architecture for packet classification,” in Proceedings of
the IEEE International Conference on Microelectronics, pp. 96–
99, Cairo, Egypt, December 2010.

[4] D. Taylor, “Survey and taxonomy of packet classification tech-
niques,” ACM Computing Surveys, vol. 37, no. 3, pp. 238–275,
2005.

[5] P. Gupta and N. McKeown, “Classifying packets with hierarchi-
cal intelligent cuttings,” IEEE Micro, vol. 20, no. 1, pp. 34–41,
2000.

[6] G. V. S. Singh, F. Baboescu, and J. Wang, “Packet classification
using multidimensional cutting,” in Proceedings of the Confer-
ence on Applications, Architectures and Protocols for Computer
Communications, pp. 213–224, ACM,NewYork,NY,USA, 2003.

[7] A. G. Priya andH. Lim, “Hierarchical packet classification using
a Bloom filter and rule-priority tries,” Computer Communica-
tions, vol. 33, no. 10, pp. 1215–1226, 2010.

[8] P. Gupta and N. McKeown, “Packet classification on multiple
fields,” in Proceedings of the Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communi-
cation, pp. 147–160, ACM, New York, NY, USA, 1999.

[9] F. Baboescu and G. Varghese, “Scalable packet classification,”
IEEE/ACM Transactions on Networking, vol. 13, no. 1, pp. 2–14,
2005.

[10] T. Lakshman and D. Stiliadis, “High-speed policy-based packet
forwarding using efficient multi-dimensional range matching,”
ACMSIGCOMMComputer Communication Review, vol. 28, no.
4, pp. 203–214, 1998.

[11] O. Ahmed, S. Areibi, and D. Fayek, “PCIU: an efficient
packet classification algorithm with an incremental update
capability,” in Proceedings of the International Symposium on
Performance Evaluation of Computer and Telecommunication
Systems (SPECTS ’10), pp. 81–88, Ottawa, Canada, July 2010.

[12] S. S. V. Srinivasan and G. Varghese, “Packet classification
using tuple space search,” in Proceedings of the Conference

on Applications, Technologies, Architectures, and Protocols for
Computer Communication, pp. 135–146, ACM, New York, NY,
USA, 1999.

[13] S. S. P. Warkhede and G. Varghese, “Fast packet classification
for two-dimensional conflict-free filters,” in Proceedings of the
Conference of the IEEE Computer and Communications Societies
(INFOCOM ’01), vol. 3, pp. 1434–1443, 2001.

[14] A. Ramamoorthy, G. S. Jedhe, and K. Varghese, “A scalable
high throughput firewall in FPGA,” in Proceedings of the 16th
IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM ’08), pp. 43–52, April 2008.

[15] C. R. Meiners, A. X. Liu, and E. Torng, “Topological trans-
formation approaches to TCAM-Based packet classification,”
IEEE/ACM Transactions on Networking, vol. 19, no. 1, pp. 237–
250, 2011.

[16] Y.-K. Chang, C.-I. Lee, and C.-C. Su, “Multi-field range encod-
ing for packet classification in TCAM,” in Proceedings of the
IEEE INFOCOM, pp. 196–200, April 2011.

[17] H. Le, W. Jiang, and V. K. Prasanna, “Scalable high-throughput
sram-based architecture for ip-lookup using FPGA,” in Proceed-
ings of the 2008 International Conference on Field Programmable
Logic and Applications (FPL ’08), pp. 137–142, September 2008.

[18] I. Papaefstathiou and V. Papaefstathiou, “Memory-efficient 5D
packet classification at 40Gbps,” in Proceedings of the 26th IEEE
International Conference on Computer Communications (IEEE
INFOCOM ’07), pp. 1370–1378, May 2007.

[19] A. Nikitakis and I. Papaefstathiou, “A memory-efficient FPGA-
based classification engine,” inProceedings of the 16th IEEE Sym-
posium on Field-Programmable Custom Computing Machines
(FCCM ’08), pp. 53–62, April 2008.

[20] O. Ahmed, K. Chattha, S. Areibi, and B. Kelly, “PCIU: hardware
implementation of an efficient packet classification algorithm
with an incremental update capability,” International Journal of
Reconfigurable Computing, 2011.

[21] Y.-K. Chang, Y.-S. Lin, and C.-C. Su, “A high-speed and
memory efficient pipeline architecture for packet classification,”
in Proceedings of the 18th IEEE International Symposium on
Field-Programmable Custom Computing Machines (FCCM ’10),
pp. 215–218, May 2010.

[22] G. Antichi, A. Di Pietro, S. Giordano, G. Procissi, D. Ficara,
and F. Vitucci, “On the use of compressed DFAs for packet
classification,” in Proceedings of the 15th IEEE International
Workshop on Computer Aided Modeling, Analysis and Design of
Communication Links and Networks (CAMAD ’10), pp. 21–25,
December 2010.

[23] W. Jiang and V. K. Prasanna, “Scalable packet classification
on FPGA,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 20, no. 9, pp. 1668–1680, 2011.

[24] Z. Liu, A. Kennedy, X. Wang, and B. Liu, “Low power architec-
ture for high speed packet classification,” in Proceedings of the
4th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS ’08), pp. 131–140, ACM, New
York, NY, USA, November 2008.

[25] D. Taylor and J. Turner, “Classbench: a packet classification
benchmark,” in Proceedings of the IEEE INFOCOM, pp. 2068–
2079, 2005.

[26] O. Ahmed and S. Areibi, “GBSA: a group based search algo-
rithm for packet classification,” in Proceedings of the IEEE
International Workshop on Traffic Analysis and Classification
(TRAC ’11), pp. 1789–1794, Istanbul, Turkey, July 2011.

[27] “Xtensa instruction set architecture (ISA),” Technical Publica-
tions 95054, Tensilica Inc., Santa Clara, Calif, USA, 2012.

International Journal of Reconfigurable Computing 33

[28] Tensilica, “Xtensa processor extensions for fast ip packet classi-
fication,” Tech. Rep. AN02-603-00, Tensilica Inc., Santa Clara,
Calif, USA, 2002.

[29] RG, “Handel-C language reference manual,” Technical Report,
Celoxica, London, UK, 2005.

[30] D. Pellerin and S. Thibault, Practical Fpga Programming in C,
Prentice Hall Press, Upper Saddle River, NJ, USA, 1st edition,
2005.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

