
Research Article
An Efficient Evolutionary Task Scheduling/Binding
Framework for Reconfigurable Systems

A. Al-Wattar, S. Areibi, and G. Grewal

School of Engineering and Computer Science, University of Guelph, Guelph, ON, Canada N1G 2W1

Correspondence should be addressed to S. Areibi; sareibi@uoguelph.ca

Received 13 September 2015; Revised 26 November 2015; Accepted 16 December 2015

Academic Editor: Nadia Nedjah

Copyright © 2016 A. Al-Wattar et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Several embedded application domains for reconfigurable systems tend to combine frequent changes with high performance
demands of their workloads such as image processing, wearable computing, and network processors. Time multiplexing of
reconfigurable hardware resources raises a number of new issues, ranging from run-time systems to complex programmingmodels
that usually form a reconfigurable operating system (ROS). In this paper, an efficient ROS framework that aids the designer from
the early design stages all the way to the actual hardware implementation is proposed and implemented. An efficient reconfigurable
platform is implemented along with novel placement/scheduling algorithms. The proposed algorithms tend to reuse hardware
tasks to reduce reconfiguration overhead, migrate tasks between software and hardware to efficiently utilize resources, and reduce
computation time. A supporting framework for efficient mapping of execution units to task graphs in a run-time reconfigurable
system is also designed.The framework utilizes an Island Based Genetic Algorithm flow that optimizes several objectives including
performance, area, and power consumption. The proposed Island Based GA framework achieves on average 55.2% improvement
over a single-GA implementation and an 80.7% improvement over a baseline random allocation and binding approach.

1. Introduction

In the area of computer architecture choices span awide spec-
trum,withApplication Specific IntegratedCircuits (ASICs) and
General-Purpose Processors (GPPs) being at opposite ends.
General-Purpose Processors are flexible, but unlike ASICs,
they are not optimized for specific applications. Reconfig-
urable architectures, in general, and Field Programmable Gate
Arrays (FPGAs), in particular, fill the gap between these
two extremes by achieving both the high performance of
ASICs and the flexibility of GPPs. However, FPGAs are still
not a match for the lower power consumed by ASICs, nor
for the performance achieved by the latter. One important
feature of FPGAs is their ability to be partially repro-
grammed during the execution of an application. This Run-
Time Reconfiguration capability provides common benefits
when adapting hardware algorithms during system run-time
including sharing hardware resources to reduce device count,
minimizing power, and shortening reconfiguration time [1].

Many embedded application domains for reconfigurable
systems require frequent changes to support the high
performance demands of their workloads. For example,
in telecommunication applications, several wireless stan-
dards and technologies, such as WiMax, WLAN, GSM, and
WCDMA, have to be utilized and supported. However, it
is unlikely that these protocols will be used simultaneously.
Accordingly, it is possible to dynamically load only the archi-
tecture that is needed onto the FPGA. Also, in an Unmanned
Aerial Vehicle (UAV), employing different machine vision
algorithms and utilizing the most appropriate based on the
environment or perhaps the need to lower power consump-
tion is, yet, another example.

Time multiplexing of reconfigurable hardware resources
raises a number of new issues, ranging from run-time
systems to complex programming models that usually form
a Reconfigurable Hardware Operating System (ROS). The
ROS performs online task scheduling and handles resource
management. The main objective of ROS for reconfigurable

Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2016, Article ID 9012909, 24 pages
http://dx.doi.org/10.1155/2016/9012909

2 International Journal of Reconfigurable Computing

platforms is to reduce the complexity of developing applica-
tions by giving the developer a higher level of abstractionwith
which to work.

Problem Definition. Performance is one of the fundamental
reasons for using Reconfigurable Computing Systems (RCS).
Bymapping algorithms and applications to hardware, design-
ers can not only tailor the computation components, but
also perform data-flow optimization to match the algorithm.
Typically, a designer would manually divide the FPGA fabric
into both static and dynamic regions [2]. The static regions
accommodatemodules that donot change in time, such as the
task manager and necessary buses used for communication.
The dynamic region is partitioned into a set of uniform
or nonuniform blocks with a certain size called Partial
Reconfigurable Regions (PRRs). Each PRR can accommodate
Reconfigurable Modules (RM) application specific hardware
accelerators for the incoming tasks that need to be executed.
In any type of operating system, a scheduler decides when to
load new tasks to be executed. Efficient task scheduling algo-
rithms have to take task dependencies, data communication,
task resource utilization, and system parameters into account
to fully exploit the performance of a dynamic reconfigurable
system.

A scheduling algorithm for a reconfigurable system that
assumes one architecture variant for the hardware imple-
mentation of each task may lead to inferior solutions [3].
Having multiple execution units per task helps in reducing
the imbalance of the processing throughput of interacting
tasks [4]. Also, static resource allocation for Run-Time Recon-
figuration (RTR)might lead to inferior results, as the number
of PRRs for one application might be different from the
number required by another. The type of PRRs (uniform,
nonuniform, and hybrid) tends to play a crucial role as well
in determining both performance and power consumption
(Figure 1).

ROS Main Components. Reconfigurable computing is capa-
ble of mapping hardware tasks onto a finite FPGA fabric
while taking into account the dependency among tasks
and timing constraints. Therefore, managing the resources
becomes essential for any reconfigurable computing plat-
form. Dynamic partial reconfiguration allows several inde-
pendent bit-streams to be mapped into the FPGA fabric
independently, as one architecture can be selectively swapped
out of the chip while another is actively executing. Partial
reconfiguration provides the capability of keeping certain
parts intact in the FPGA, while other parts are replaced.

A Reconfigurable Computing System traditionally con-
sists of a GPP and several Reconfigurable Modules (as seen
in Figure 2) that execute dedicated hardware tasks in parallel
[5]. A fundamental feature of a partially reconfigurable FPGA
is that the logical components and the routing resources
are time multiplexed. Therefore, in order for an application
to be mapped onto an FPGA, it needs to be divided into
independent tasks such that each subtask can be executed at
a different time.

The use of an operating system for reconfigurable
computing should ease application development, provide

a higher level of abstraction, and, most importantly, ver-
ify and maintain applications. There are several essential
modules that need to exist in any reconfigurable operating
system implementation, including the bit-stream manager,
scheduler, placer, and communications network (Figure 2).

(1) The Scheduler. This is an important component that
decides when tasks will be executed. Efficient task
scheduling algorithms have to take data communi-
cation, task dependencies, and resource utilization
of tasks into consideration to optimally exploit the
performance of a dynamic reconfigurable system.
Scheduling techniques proposed in the literature have
different goals, such as improving hardware resource
utilization, reduction of scheduling time, and/or
reconfiguration overhead. Other reconfigurable com-
puting schedulers attempt to reduce fragmentation
and power consumption [6].

(2) Bit-StreamManager. This module manages the load-
ing/unloading of partial bit-streams from storage
media into a PRR. The bit-stream manager requires
fast and fairly large storage media. Therefore, it is
preferable to use a dedicated hardwaremodule for this
task. A bit-stream manager is further decomposed
into a storage manager and a reconfigurable manager.
The latter reads bit-streams from the storage manager
and then downloads them onto the FPGA fabric.

(3) The Placer. In conventional reconfigurable devices,
a placer decides where to assign new tasks in the
reconfigurable area. In RTR systems, the scheduler
and placer are interdependent. Therefore, they are
implemented as a single entity that makes it challeng-
ing to identify clear boundaries between them.

(4) Communication Manager. This module defines how
hardware and software tasks communicate and inter-
act with each other.The communication network pro-
posed by the manager depends on the type of appli-
cations used in the system. For example, streaming
applications such as vision need a different topology
than that of a centralized computational application.

ProposedWork andMotivations. In this paper, we propose and
implement a framework for ROS that aids the designer from
the early stages of the design to the actual implementation and
submission of the application onto the reconfigurable fabric.
A novel online scheduler, coined RCOnline, is developed that
seeks to reuse hardware resources for tasks in order to reduce
reconfiguration overhead, migrate tasks between software
and hardware, and schedule operations based upon a priority
scheme. With regard to the latter, RCOnline dynamically
measures several system metrics, such as execution time and
reconfiguration time, and then uses these metrics to assign
a priority to each task. RCOnline then migrates and assigns
tasks to the most suitable processing elements (SW or HW)
based on these calculated priorities.

One of the main problems encountered in RTR is iden-
tifying the most appropriate floorplan or infrastructure that
suits an application. Every application (e.g., machine vision,

International Journal of Reconfigurable Computing 3

PRR1
PRR1

PRR2
PRR2

PRR3 PRR3

PRR4

(a)

GPP1GPP1GPP1 GPP2GPP2

GPP3
PR

R1
PR

R2
PR

R3

PR
R1

PR
R2

PR
R3

PR
R4

PR
R5

PR
R6

PR
R1

PR
R2

PR
R3

PR
R4

PR
R5

PR
R6

PR
R7

PR
R8

PR
R9

(b)

Figure 1: (a) PRR layout, (b) miscellaneous platforms/floorplans.

Bit-streams

GPPPRRs

FPGA

library
(HW tasks)

Tasks sets

Memory

Scheduler/placer

HW tasks

HW tasks

Memory controller

Reconfiguration

SW
 tasks

SW
controller

Bit-streams manager

Communication network

HybHW

HybHW

HybHW

HybHW HybHW

HybHWHybHWHybHWHybHW

HybHW

HybHW HybHW

HybHW
HybHW

HybHW

HybHW

HybHW

Priority

Output

Task ID

Inputs

Operation

type

−

−

+

+

+

+

+

+

+

+

∗

∗

∗

∗ ∗

∗

0
0

1

1

1

1

11

2
2

2

2 2 2

3 3

3

3

4

4 4

5

5 5

5

6
677

8 8

8

8

9 910

tasks

>

12

14 14

15

5

12 13 13

15

1616

1011 11

Figure 2: Reconfigurable OS: essential components.

wireless-sensor network) requires specific types of resources
that optimize certain objectives, such as reducing power con-
sumption and/or improving execution time. In our previous
work published in [7], a dynamic reconfigurable framework
consisting of five reconfigurable regions and two GPPs was
implemented, along with simple scheduling algorithms. In
this paper, a novel efficient and robust scheduling algorithm is
developed that seeks to reuse hardware tasks to reduce recon-
figuration time. The developed scheduler was tested using a
collection of tasks represented by Data-Flow Graphs (DFGs).
To verify the scheduler functionality and performance, DFGs

with different sizes and parameters were required; therefore, a
DFGgeneratorwas also designed and implemented.TheDFG
generator is able to generate benchmarks with different sizes
and features. However, using such a dynamic reconfigurable
platform to evaluate hundreds of DFGs based on different
hardware configurations is both complex and tedious. The
FPGA platform to be used in this work requires a different
floorplan and bit-stream for each new configuration which
limits the scope of testing and evaluation. Accordingly, an
architecture reconfigurable simulator was also developed to
simulate the hardware platform, while running the developed

4 International Journal of Reconfigurable Computing

reconfigurable operating system. The simulator allows for
faster evaluation and flexibility and thus can support different
hardware scenarios by varying the number of processing
elements (PRRs, GPPs), size/shape of PRRs, and schedulers.

Contrary to software tasks, hardware tasksmay havemul-
tiple implementation variants (execution units or hardware
implementation). These variants differ in terms of perfor-
mance, power consumption, and area. As limiting a scheduler
to one execution variant may lead to inferior solutions, we
also propose an efficient optimization framework that can
mitigate the mentioned deficiency. The optimization frame-
work extends the work we introduced in [8] which utilizes
an evolutionary Island Based Genetic Algorithm technique.
Given a particular DFG, each island seeks to optimize speed,
power, and/or area for a different floorplan. The floorplans
differ in terms of the number, size, and layout of PRRs, as
described earlier. The framework presented in this paper
uses the online proposed schedulers along with the Island
Based GA Engine, for evaluating the quality of a particular
schedule in terms of power and performance based on the
most suitable floorplan for the intended application. This
paper seeks to integrate the developed tools (simulator, DFG
generator, and schedulers) along with the Genetic Algorithm
Engine for task allocation in a unique framework that is
capable of mapping and scheduling tasks efficiently on a
reconfigurable computing platform.

Contributions. The main contributions of this paper can be
summarized in the following points:

(1) Operating System Support.The development and eval-
uation of a novel heuristic for online scheduling
of hard, real-time tasks for partially reconfigurable
devices are achieved. The proposed scheduler uses
fixed predefined Partial Reconfigurable Regions with
reuse, relocation, and task migration capability. The
scheduler dynamically measures several performance
metrics such as reconfiguration time and execution
time, calculates a priority for each task, and then
assigns incoming tasks to the appropriate process-
ing elements based on this priority. To evaluate
the proposed framework and schedulers, a DFG
generator and a reconfigurable simulator were also
developed. The simulator is freely available under the
open source GPL license on GitHub [9] to enable
researchers working in the area of reconfigurable
operating systems to utilize it as a supporting tool for
their work.

(2) Multiple Execution Variants. A multiobjective opti-
mization framework capable of optimizing total exe-
cution time and power consumption for static and
partial dynamic reconfigurable systems is proposed.
Not only is this framework capable of optimiz-
ing the aforementioned objectives, but also it can
determine the most appropriate reconfigurable floor-
plan/platform for the application. This way, a good
trade-off between performance and power consump-
tion can be achieved which results in high energy
efficiency. The proposed Island Based GA framework

achieves on average 55.2% improvement over single-
GA implementation and 80.7% improvement over a
baseline random allocation and binding approach.
The GA framework is made freely available under the
open source GPL license on GitHub [10]. To the best
of our knowledge, this is the first attempt to usemulti-
pleGA instances for optimizing several objectives and
aggregating the results to further improve solution
quality.

Paper Organization. The remainder of this paper is organized
as follows. Section 2 discusses the most significant work
published in the field of scheduling and execution unit
assignments for reconfigurable systems. Section 3 introduces
the tools developed to test and evaluate the proposed work.
Section 4 introduces a novel reconfigurable scheduler with
a comparison with other schedulers adapted from the lit-
erature. Section 5 introduces the evolutionary framework
developed for allocating and binding execution units to
task graphs. Finally, conclusions and future directions are
presented in Section 6.

2. Related Work

The work in [11, 12] first proposed the idea of using recon-
figurable hardware, not as a dependent coprocessor, but
as a standalone independent hardware unit. In this early
implementation hardware tasks can access a FIFO, memory
block, and I/O driver or even signal the scheduler.The system
uses an external powerful processor and connects to an FPGA
via the PCI port. The proposed run-time environment can
dynamically load and run variable size tasks utilizing partial
reconfiguration. The system proposed in [12] was used to
explore online scheduling for real-time tasks for both 1D and
2D modules.

The work in [13] was the first to explore the migration
between hardware and software tasks. The authors studied
the coexistence of hardware (on an FPGA) and software
threads and proposed a migration protocol between them for
real-time processing. The authors introduced a novel alloca-
tion scheme and proposed an architecture that can benefit
from utilizing dynamic partial reconfiguration. However, the
results published were mainly based on pure simulation.

In [14], the author presented a run-time
hardware/software scheduler that accepts tasks modeled
as a DFG. The scheduler is based on a special architecture
that consists of two processors (master and slave), a
Reconfigurable Computing Unit (RCU), and shared
memory. The RCU runs hardware tasks and can be partially
reconfigured. Each task can be represented in three forms:
a hardware bit-stream run on the RCU, a software task
for the master processor, or a software task for the slave
processor. A scheduler migrates tasks between hardware
and software to achieve the highest possible efficiency. The
authors found the software implementation of the scheduler
to be slow.Therefore, the authors designed and implemented
a hardware version of the scheduler to minimize overhead.
The work focuses mainly on the hardware architecture of the
scheduler and does not address other issues associated with

International Journal of Reconfigurable Computing 5

the loading/unloading of hardware tasks or the efficiency
of intertask communication. Another drawback was the
requirement that each task in the DFG be assigned to one
of the three processing elements mentioned above. This
restriction conflicts with the idea of software/hardware
migration.

The authors of [15] designed and implemented an exe-
cution manager that loads/unloads tasks in an FPGA using
dynamic partial reconfiguration. The execution manager
insures task dependency and proper execution. It also uses
prefetching and task reuse to reduce configuration time
overhead. The task is modeled using scheduled DFGs in
order to be usable by the execution manager. The authors
implemented a software and hardware version of themanager
but found the software versions to be too slow for real-time
applications.The implementation used a simulated hardware
task that consists of two timers to represent execution
and configuration time. There are still many unaddressed
issues for the manager to be used with real tasks, such as
configuration management and intertask communication.

Thework in [16] proposes a hardwareOS, called CAP-OS,
that uses run-time scheduling, task mapping, and resource
management on a run-time reconfigurable multiprocessor
system. The authors in [17] proposed to use the RAMPSOC
with two schedulers: a static scheduler to generate a task
graph and assign resources and a dynamic scheduler that uses
the generated task graph produced by the static scheduler. A
deadline constraint for the entire graph is imposed instead of
individual tasks. Most of their work was based on simulation,
and the implementation lacked task reconfiguration.

Many researchers considered the use ofmultiple architec-
ture variants as part of developing an operating system or a
scheduler. In [18, 19] multiple core variants were swapped to
enhance execution time and/or reduce power consumption.
In our previous work [7], we alternated between software and
hardware implementation of tasks to reduce total execution
time. The work presented here is different in its applicability
since it is more comprehensive. It can be used during the
design stage to aid the designer to select the appropriate
application variant for tasks in the task graph, as will be
described in Section 5.

GeneticAlgorithms (GAs)were used bymany researchers
to map tasks into FPGAs. For example, in [20] a hardware
based GA partitioning and scheduling technique for dynam-
ically reconfigurable embedded systems was developed. The
authors used a modified list scheduling and placement
algorithm as part of the GA approach to determine the best
partitioning. The work in [21] maps task graphs into a single
FPGA composed of multiple Xilinx MicroBlaze processors
and hardware accelerators. In [22], the authors used a GA
to map task graphs into partially reconfigurable FPGAs.
The authors modeled the reconfigurable area into tiles of
resources with multiple configuration controllers operating
in parallel. However, all of the above works do not take into
account multiple architecture variants.

In [18] the authors modified the Rate Monotonic Schedul-
ing (RMS) algorithm to support hot swapping architecture
implementation. Their goal is to minimize power consump-
tion and reschedule the task on the fly while the system

is running. The authors addressed the problem from the
perspective of schedule feasibility, but their approach does
not target any particular reconfigurable platform, nor does
it take multiple objectives into consideration which makes
it different from the proposed work in this paper. In [23],
the authors used an Evolutionary Algorithm (EA) to optimize
both power and temperature for heterogeneous FPGAs. The
work in [23] is very different from the current proposed
framework in terms of the types of objectives considered and
their actual implementation, since the focus is on swapping
a limited number of GPP cores in an embedded processor
for the arriving tasks. In contrast, our proposed work focuses
on optimizing the hardware implementation for every single
task in the incoming DFG and targets static and partial
reconfigurable FPGAs.

In [3, 4] the authors used a GA framework for task
graph partitioning along with a library of hardware task
implementation events that contain multiple architecture
variants for each hardware task.The variants reflect trade-offs
between hardware resources and task execution throughput.
In their work, the selection of implementation variants
dictates how the task graph should be partitioned. There are
a few important differences from our proposed framework.
First, our work targets dynamic partial RTR with reconfig-
urable operating systems. The system simultaneously runs
multiple hardware tasks on PRRs and can swap tasks in real-
time between software and hardware (the reconfigurable OS
platform is discussed in [7]). Second, the authors use a single
objective approach, selecting the variants that give minimum
execution time. In contrast, our approach is multiobjective
and not only seeks to optimize speed and power, but also
seeks to select the most suitable reconfigurable platform. As
each of the previous objectives is likely to have its ownoptimal
solution, the resulting optimization does not give rise to a
single superior solution, but rather a set of optimal solutions,
known as Pareto optimal solutions [24]. Unlike the work in
[3, 4], we employ a parallel, multiobjective Island Based GA
to generate the set of Pareto optimal solutions.

3. Methodology

In this section, the overall methodology of the proposed
work, along with the tools developed to implement the
framework, is presented. The two major phases of the flow
are shown in Figure 3:

(1) Scheduling and Placement. This phase is responsible
for scheduling and placing incoming tasks on the
available processing elements (GPP/PRRs). In our
earlier work in [7], a complete reconfigurable plat-
form, based on five PRRs and two GPPs which runs
a simple ROS, was designed and mapped onto a
Xilinx 6 FPGA. For our current work, using the pre-
viously developed hardware reconfigurable platform
imposed a limitation, as modifying the PRRs/GPPs is
a tedious and time-consuming process. Accordingly,
we developed a reconfigurable simulator that hosts
the developed ROS and emulates the reconfigurable
platform, as will be discussed in Section 3.2.The ROS

6 International Journal of Reconfigurable Computing

(2) Algorithm binding

(1) Scheduling and placement

FPGA
RTR platform

DFG
generator

E Island Based
GA for efficient

mapping
Reconfigurable

simulator

Scheduling
algorithms

A

BC

D

Figure 3: Overall methodology.

runs a novel online reconfigurable-aware scheduler
(RCOnline) that is able to migrate tasks between soft-
ware and hardware and measure real system metrics
to optimize task scheduling, as will be explained in
Section 4.2. We also developed a DFG generator to
evaluate the proposed system,whichwill be presented
in Section 3.1.

(2) Algorithm Binding. Phase one assumes a single execu-
tion element (architecture) per task. This assumption
might lead to a suboptimal solution, as a hardware
task can be implemented in different forms (e.g., serial
or parallel implementation). To allow the proposed
system to consider multiple (different) architecture
implementation events, we implemented a multiob-
jective Island Based Genetic Algorithm platform that
not only optimizes for power and speed, but also
selects the most appropriate platform for the DFG, as
will be explained in Section 5.

3.1. DFG Generator. Scheduling sequential tasks on multiple
processing elements is an NP-hard problem [25]. To develop,
modify, and evaluate a scheduler, extensive testing is required.
Scheduling validation can be achieved using workloads cre-
ated either by actual recorded data from user logs or more
commonly by use of randomly synthetically generated bench-
marks [25]. In this work, a synthetic random DFG generator
was developed to assist in verifying system functionality
and performance (note: several real-world benchmarks from
MediaBench DSP suite [26] were also used to validate the
work presented, as will be explained in Section 3.3). An
overview of the DFG generator is presented in Figure 4.
The inputs to the DFG generator include a library of task
types (operations), the number of required nodes, the total
number of dependencies between nodes (tasks), and the
maximum number of dependencies per task. In addition, the
user can control the percentage of occurrences for each task
or group of tasks. The outputs of the DFG generator consist
of two files: a graph and a platform file. The graph file is a
graphical representation of the DFG in a user-friendly format

[27], while the platform file is the same DFG in a format
compatible with the targeted platform.

The DFG generator consists of three major modules, as
seen in Figure 4:

(1) Matrix Generator. This module provides the core
functionality of the DFG generator and is responsible
for constructing the DFG skeleton (i.e., the nodes and
dependencies). The nodes and edges that constitute
theDFGare generated randomly.Thenodes represent
functions (or tasks) and the edges in the graph
represent data that is communicated among tasks.
Both tasks and edges are generated randomly based
on user-supplied directives. The matrix dependency
generator builds a DFG without assigning operations
to the nodes (nodes and dependencies).

(2) Matrix Operation Generator. This module randomly
assigns task types to the DFG (nodes) generated by
the Matrix Generator module from a library of task
types based on user-supplied parameters.

(3) Graph File Generator. This module produces a graph
representation of the DFG in a standard open source
DOT (graph description language) format [27].

3.2. Reconfigurable Simulator. Using the hardware platform
introduced in [7] has several advantages but also introduces
some limitations. The FPGA platform to be used in this
work requires a different floorplan and bit-stream for each
new configuration which limits the scope of testing and
evaluation. Accordingly, an architecture reconfigurable sim-
ulator was developed to simulate the hardware platform in
[7], while running the developed reconfigurable operating
system. The simulator consists of three distinct layers, as
shown in Figure 5.

The Platform Emulator Layer (PEL) emulates the RTR
platform functionality and acts as a virtual machine for
the upper layers. The ROS kernel along with the developed
schedulers runs on top of the PEL. The developed code of
the ROS kernel along with the schedulers can run on both

International Journal of Reconfigurable Computing 7

Task type details

(i) Tasks types list
(ii) Tasks group

(iii) Groups % of occurrence

(i) Number of nodes
(ii) Number of total dep.

(iii) Number of dep. per node

Graph format
settings

Matrices generator
Three randomization engines

(i) Rand. dep. between tasks
(ii) Rand. dep. per task

(iii) Rand. operation per task

(i) Tasks matrix
(ii) Operation matrix

Platform file generator
Generates the platform specific DFG

DFG platform file

Graph file generator
Generates the graph file

DOT graph file

Figure 4: Components of the DFG generator.

Application layer (DFGs)

ROS kernel Schedulers

Reconfigurable platform emulator

Figure 5: Reconfigurable simulator layout.

the simulator and the actual hardware RTR platform with-
out any modification. The use of the PEL layer enables
the designer to easily develop and test new schedulers on
the simulator before porting them to the actual hardware
platform.

The developed simulator utilizes the proposed schedulers
and supports any number of PRRs and/or GPPs (software
or hardware). The simulator was written in the C language
and runs under Linux. The code was carefully developed
in a modular format, which enables it to accommodate
new schedulers in the future. The simulator uses several
configuration files, similar to the one used by the Linux OS.
We opted to make the simulator freely available under the
open source GPL license on GitHub [9] to enable researchers

working in the area of reconfigurable operating systems to
utilize it as a supporting tool for their work.

3.2.1. Simulator Inputs. The simulator accepts different input
parameters to control its operation including scheduler selec-
tion and architecture files names. The simulator is developed
to emulate the hardware platform and expects the following
configuration files as input:

(i) A task (architecture) library file which stores task
information used by the simulator: task information
includes the mode of operation (software, hardware,
or hybrid), execution time, area, reconfiguration time,
reconfiguration power, and dynamic power con-
sumption (hybrid tasks can migrate between hard-
ware and software), on a per-task-type basis. Some
of these values are based on analytic models found
in [28, 29], while others are measured manually from
actual implementation on a Xilinx Virtex-6 platform.

(ii) A layout (platform) file which specifies the FPGA
floorplan: the layout includes data that represent the
size, shape, and number of PRRs along with the types
and number of GPPs.

(iii) ADFG file which stores theDFGs to be scheduled and
executed.

3.2.2. Simulator Output. The simulator generates several
useful system parameters, including total execution time,

8 International Journal of Reconfigurable Computing

Table 1: Benchmark specifications.

ID Name # of nodes # of edges Avg.
edges/node Critical path Parallelism

(nodes/crit. path)
S1 Synthesized (4 task types) 50 50 1 6 8.3
S2 Synthesized (4 task types) 150 200 1.33 15 10.1
S3 Synthesized (8 task types) 25 40 1.6 7 3.5
S4 Synthesized (8 task types) 100 120 1.2 7 14.2
S5 Synthesized (5 task types) 13 10 0.77 3 4.3
S6 Synthesized (4 task types) 10 5 0.5 3 3.3
S7 Synthesized (8 task types) 50 60 1.2 8 6.3
S8 Synthesized (4 task types) 100 120 1.2 7 14.3
S9 Synthesized (8 task types) 150 200 1.33 8 25.1
S10 Synthesized (8 task types) 200 60 0.3 4 50.1
S11 Synthesized (4 task types) 100 150 1.5 8 12.5
DFG2 JPEG-Smooth Downsample 51 52 1.02 16 3.2
DFG6 MPEG-Motion Vectors 32 29 0.91 6 5.3
DFG7 EPIC-Collapse pyr 56 73 1.3 7 8.1
DFG12 MESA-Matrix Multiplication 109 116 1.06 9 12.1
DFG14 HAL 11 8 0.72 4 2.8
DFG16 Finite Input Response Filter 2 40 39 0.975 11 3.6
DFG19 Cosine 1 66 76 1.15 8 8.3

reconfiguration time (cycles), task migration information,
and hardware reuse. A task placement graph can also be
generated by enabling specific options as will be seen in the
example presented in Section 5.2.2.

3.3. Benchmarks. Verifying the functionality of any devel-
oped scheduler with the aid of a simulator requires testing
based on benchmarks with different parameters, properties,
and statistics. Accordingly, ten DFGs were generated by the
DFG generator presented in Section 3.1. These DFGs differ
with respect to the number of tasks (nodes), dependencies,
and operations, as shown in Table 1. The number of oper-
ations refers to the different unique functions (task types)
in the DFG. The benchmark suite consists of two different
sets of DFGs. The first set uses four operations, while the
second set uses eight operations that have variable exe-
cution time, dependencies, and possible hardware/software
implementation. In addition to the synthesized benchmarks,
seven real-world benchmarks selected from the well-known
MediaBench DSP suite [26] were used in the schedulers’
evaluation, as shown in the lower part of Table 1.

4. Scheduling Algorithms

In this section, we introduce a novel online scheduling
algorithm (RCOnline) along with an enhanced version
(RCOnline-Enh.) for reconfigurable computing. The pro-
posed scheduler manages both hardware and software tasks.
We also introduce an efficient offline scheduler (RCOffline)
for reconfigurable systems that is used to verify the quality of
solutions obtained by the online scheduler. Offline schedulers
often produce solutions superior to those obtained by online

schedulers since the former build complete information
about the system activities. In addition, several works in the
related literature resort to such an approach to measure the
quality of solutions obtained by online schedulers due to lack
of open source code of work published in the past [30–32].
Also, schedulers developed by many researchers are usually
implemented based on different assumptions and constraints
that are not compatible with those employed in our proposed
schedulers.

4.1. Baseline Schedulers. One of the main challenges faced
in this work is the lack of compatible schedulers, tools, and
benchmarks that can be used to compare with our results.
Therefore, throughout the research process, we considered
several published algorithms and adapted them to represent
our RTR platform for the sole sake of comparing with
our proposed schedulers. Two of the adapted scheduling
algorithms are described briefly in the following sections.

4.1.1. RCOffline Scheduler. An offline scheduler was imple-
mented and integrated into our proposed RTR platform.The
RCOffline scheduler is a greedy offline reconfiguration aware
scheduler for 2D dynamically reconfigurable architectures. It
supports task reuse, module prefetch, and a defragmentation
technique. Task reuse refers to a policy that the operating
system can take to reduce reconfiguration time. This is
accomplished by reusing the same hardware accelerator that
exists in the floorplan of the FPGA when a new arriving
task needs to be scheduled. The main advantage of utilizing
such a scheduler is that it produces solutions (schedules)
that are of high quality (close to those obtained by an ILP
based model [33, 34]) in fraction of the time. The RCOffline

International Journal of Reconfigurable Computing 9

(1) DFGs = Compute ALAP and sort (DFG).

(2) ReadyQ =findAvailableTasks(DFGs)//no dependencies
(3) while there are unscheduled tasks do
(4) if (Reuse = true)

(5) for all tasks in ReadyQ do
(6) PRR# = FindAvailablePRR(task)

(7) if (PRR#) then

(8) ts=t

(9) for all p in PredecessorOf(task)

(10) ts=max(ts, tps + tpl)

(11) end for
(12) remove task from ReadyQ

(13) end if
(14) end for
(15) else /⋆Reuse = false⋆/
(16) for all tasks in ReadyQ do
(17) PRR# = findEmptyPRR(task)

(18) if (PRR# and Reconfiguration) then

(19) ts=t+trs

(20) for all p in PredecessorOf(task)

(21) ts=max(ts, tps + tpl)

(22) end for
(23) Remove task from ReadyQ

(24) end if
(25) end for
(26) end if
(27) ReadyQ=CheckforAvailableTasks /⋆ dependencies met ⋆/
(28) end while

Algorithm 1: Pseudo-code for RCOffline.

pseudo-code is shown inAlgorithm 1.TheRCOffline starts by
sorting the incoming tasks in the DFG using the As-Late-As-
Possible (ALAP) algorithm and then adds the ready tasks (no
dependencies) to the ready queue (ReadyQ) [lines (1)-(2)].
For task reuse, the scheduler will locate an available PRR [line
(6)] and then tentatively set the start time (𝑡

𝑠
) to the current

time (𝑡) [line (8)]. Similarly, if task reuse is false, the scheduler
will look for an empty or unused PRR and only perform
reconfiguration if the reconfiguration controller is available
[lines (17)-(18)]. The tentative start time in this case is set
to the sum of current time and reconfiguration time (𝑡

𝑟𝑠
).

To prevent running a task before the predecessors assigned
to the same PRR, the scheduler checks the end time of the
predecessor tasks [lines (9)–(11), (20)–(22)]. This might lead
to a gap between the reconfiguration time of a task and
the time to execute it on the PRR (i.e., task prefetching).
Since RCOffline is an offline based scheduler it expects the
entire DFG in advance. Also, it assumes the existence of
a reconfigurable platform that supports task relocation and
PRR resizing at run-time.

4.2. RCOnline Scheduler. The quality of the employed online
scheduling algorithms in an RTR-OS can have a significant
impact on the final performance of applications running on a
reconfigurable computing platform.The overall time taken to
run applications on the same platform can vary considerably
by using different schedulers.

The online scheduler (RCOnline) proposed in this work
was designed to intelligently identify and choose the most
suitable processing element (PRR or GPP) for the current
task based on knowledge extracted from previous tasks’
historical data. The scheduler dynamically calculates task
placement priorities based on data obtained from the pre-
vious running tasks. During task execution, the sched-
uler attempts to learn about running tasks by classifying
them according to their designated types. The scheduler
then dynamically updates a “task type table” with the
new task type information. The data stored in the table
is used by the scheduler at a later time to classify and
assign priorities to new incoming tasks. The RCOnline
scheduler was further enhanced by modifying task selec-
tion from the ready queue. This enhancement dramati-
cally improves performance, as will be explained later in
Section 4.4.

Enhancing algorithm performance by learning from his-
torical previous data is not an issue for embedded systems
since usually the same task sets run repeatedly on the same
platform. For example, video processing applications use the
same repeated task sets for every frame. That is to say, the
scheduler will always produce a valid schedule even during
the learning phase; however its efficiency (schedule quality)
enhances over time.

The following definitions are essential to further under-
stand the functionality of the RCOnline algorithm:

10 International Journal of Reconfigurable Computing

(1) //The PRRS should be stored from the smallest to largest such that
(2) // those with smaller reconfiguration time have smaller IDs
(3) Sort PRRs in ascending order based on size.

(4) Read the node with the highest task priority

(5) if (All dependencies are met)

(6) {add task to ready queue}

(7) // SELECTION BY RCOnline versus RCOnline-Enh
(8) Fetch the first task from the ReadyQueue // -- used by RCOnline
(9) Fetch a task that matches an existing reconfigured task // -- used by RCOnline-Enh
(10) switch (task->mode)

(11) { case Hybrid HW :

(12) { if(TaskTypePriority==0 and GPP is free)

(13) {// TaskTypePriority ==0 indicates that task is preferred to run on SW
(14) Migrate task from HybridHW to HybridSW

(15) Add to the beginning of the ReadyQueue}

(16) }else{
(17) if (there is a free PRR(s) that fits the current task)

(18) {{Search Free PRRs for a match

(19) against the ready task}

(20) if (task found)

(21) run ready task on the free PRR

(22) else{
(23) currentPRR= smallest free PRR;

(24) if(TaskTypePriority< currentPRR and GPP is free)

(25) { // check if it’s faster to reconfigure or run on SW
(26) Migrate task from HybridHW to HybridSW

(27) Add to the beginning of the ReadyQueue }

(28) }else{
(29) Reconfigure currentPRR with the ready task bit-stream}}

(30) }else // all PRRs are busy
(31) {if (GPP is free)

(32) { Migrate task from HybridHW to HybridSW

(33) Add to the beginning of the ReadyQueue }

(34) }else{
(35) // return to main program and
(36) // wait for free resources
(37) Increase the Busy Counter

(38) return Busy}

(39) break; }
(40) case HybridSW :

(41) {if (GPP is free)

(42) { load task into GPP}

(43) }else if (there is a free PRR)

(44) { Migrate task from HybridSW to HybridHW

(45) Add to the beginning of the ReadyQueue}

(46) }else{
(47) // return to main program and
(48) //wait for free resources
(49) Increase the Busy Counter

(50) return Busy

(51) break;}} End

Algorithm 2: Pseudo-code for RCOnline/RCOnline-Enh. (with reuse and task migration).

(i) PRRs Priority. It is calculated based on the PRR size.
PRRs with smaller size have lower reconfiguration
time and thus have higher priorities.

(ii) Placement Priority. It is a dynamically calculated
metric which is frequently updated on the arrival
of new tasks. Placement priority is assigned based

on the type (function) of task. RCOnline uses this
metric to decide where to place the current tasks.
Placement priority is an integer value, where the lower
the number the higher the priority.

Based on the pseudo-code of Algorithm 2, RCOnline takes
the following steps to efficiently schedule tasks:

International Journal of Reconfigurable Computing 11

(1) The PRRs are given priority based on their respective
size. PRR priority is a number from 0 to PRRmax − 1.

(2) Arriving tasks are checked for dependencies, and if all
dependencies are satisfied, the task is appended to the
ready queue.

(3) The scheduler then selects the task with the high-
est priority from the ready queue; if task mode is
HybridHW (i.e., it can be placed in either HWor SW)
then the following occur:

(a) The scheduler checks the current available PRRs
for task reuse. If reuse is not possible (i.e., no
module with similar architecture is configured),
the scheduler uses placement priority and PRR
priority to either place the task on an alternative
PRR or migrate it to software (lines (28) to (41)
in the pseudo-code of Algorithm 2). This step
is useful for nonuniform implementation, since
each PRR has a different reconfiguration time.
Taskmigration is performedwhen the following
conditions are met:

Migrate task= True,
if [(HW Exec. time + Reconfig.
time) > SW Exec. Time] or
[there are No free PRRs]

(b) If no resources are available (either in hardware
or in software), a busy counter is incremented
while waiting for a resource to be free (lines
(46) to (50)). The busy counter is a performance
metric that is used to give an indication of how
busy (or idle) the scheduler is.The busy counter
counts the number of cycles a task has to wait
for free resources.

(4) When the task mode is HybridSW (i.e., task should
run on SW but can also run on HW), RCOnline first
attempts to run the task on a GPP and then migrates
it to hardware based on GPP availability. Otherwise,
RCOnline increments the busy counter and waits for
free resources (lines (49) to (50)).

(5) Software and hardware only tasks are handled in a
similar way to HybridSW and HybridHW, respec-
tively, with no task migration.

Placement priority, which is calculated by the scheduler, is
different than task priority, which is assigned to DFG nodes
at design time, in that placement priority determines where
a ready task should be placed, while task priority determines
the order in which tasks should run.

The calculation of the PRR placement priority takes into
account the PRRs’ reconfiguration times in addition to task
execution time:

(1) At the end of task execution, RCOnline adds any
newly discovered task type to the task type table.

(2) The scheduler updates the reconfiguration time for
the current PRR in the task type table.

(3) RCOnline updates the execution time for the current
processing element based on the following formula:

𝐸new = 𝐸old + (𝐸new − 𝐸old) ∗ 𝑋, (1)

where 𝐸 denotes execution time and 𝑋 is the learn-
ing factor. Based on empirical testing and extensive
experimentation,𝑋 has been set to a value of 0.2. The
basic idea is to adapt the new execution time in such
a way that does not radically deviate away from the
average execution times of the processing element.
This assists the scheduler to adapt for changes in
execution time for the same operation. The learning
formula takes into account old accumulated average
execution time (80%) and the most recent instance
of the task (20%). The goal of the task type table is
to keep track of execution times (and reconfiguration
times in the case of PRRs), of each task type on every
processing element (PRRs and GPPs). Accordingly,
when similar new tasks arrive, the scheduler can use
the data in the table to determine the appropriate
location to run the task.

(4) Finally, RCOnline uses the measured reconfiguration
and execution times to calculate placement priority
for each task type.

Assuming all tasks in a DFG are available, the complexity of
RCOnline isO(n), where n is the number of tasks in the DFG.
Figure 6 depicts the learning behavior of RCOnline with an
example DFG consisting of six nodes. As task 1 completes
execution, the system records the following information (as
shown in Figure 6(a)) in the task type table: (i) the task
operation (multiplication in this case), (ii) reconfiguration
time (10ms in PRR1), and (iii) the execution time (HW,
200ms). Following the execution of task 2, task type table
is updated again with the features of the new task type
(addition), as shown in Figure 6(b). As tasks 4, 5, and 6
arrive, the scheduler will have had more knowledge about
their reconfiguration and execution times based on prior
information collected. The recorded performance metrics
are then used to calculate placement priority that will assist
the scheduler to efficiently select future incoming tasks with
similar type.

4.3. RCOnline-Enh. To further enhance the performance
of the RCOnline scheduler, the task selection criteria were
slightlymodified. Instead of selecting the first available task in
the ready queue (i.e., the task with the highest priority), the
scheduler searches the ready queue for a task that matches
an existing reconfigured task (line (9) in Algorithm 2). In
practice, this simple modification dramatically reduces the
number of reconfigurations (see the results presented in
Section 4.4). Figure 7 clearly demonstrates the main differ-
ence between the RCOnline algorithm and the RCOnline-
Enh. As can be seen in the example, the RCOnline-Enh. seeks
to switch task “2” with task “1” to take advantage of task reuse
and thusminimize the overall reconfiguration time that takes
place in the system.

12 International Journal of Reconfigurable Computing

Execution time (ms)

Execution time (ms)

Task type table

Task type table

Task HW SW

Task HW SW

6

5

43

21

+

+

+

+

∗

∗

∗

∗

GPP1 GPP2

?

?

?

?

?

?

?

200

200

PRR1 PRR2 PRR3

PRR1 PRR2 PRR3

10

10

80

20

PR
R2

PR
R1

PR
R3

RCOnline

Reconfiguration time (ms)

−

(a)

(b)

Reconfiguration time (ms)

Figure 6: Learning in RCOnline scheduler.

4.4. Results and Analysis. In this section, results based on
RCOnline along with an enhanced version of RCOnline are
presented. In order to achieve a fair comparison with the
RCOffline scheduler, task migration and software tasks were
completely disabled from RCOnline and RCOnline-Enh.
implementation. The same reconfigurable area available in
the hardware platform is assigned to the RCOffline scheduler.

4.4.1. Total Execution Time. The total execution time or
schedule time (cycles) measured for the proposed online
schedulers (RCOnline) and its variant are presented in
Tables 2 and 3, respectively. The tables compare the solution
quality obtained by RCOnline to the solutions obtained by
RCOffline, as well as to the solutions found by RCOnline-
Enh. 𝐶off , 𝐶on, and 𝐶enh are the total execution times (in
clock cycles) found by RCOffline, RCOnline, and RCOnline-
Enh., respectively. Δ𝐶 = 100(𝐶off − 𝐶on)/𝐶on and Δ𝐶enh =
100(𝐶off − 𝐶enh)/𝐶enh is the relative error in percent for
the schedule length found by RCOnline and RCOnline-Enh.
compared to RCOffline. This notation is used in all tables
presented in this section. Table 2 shows the total execution
time of the first run for all schedulers. Results are based on

the assumption that all PRRs are empty and RCOnline is in
the initial phase of learning. Table 3, on the other hand, shows
the total execution time after the first two iterations. At this
point, the learning phase of RCOnline is complete (i.e., third
iteration). Since RCOffline is an offline scheduler with no
learning capability, the time it takes to configure the first task
of a DFG was subtracted (assuming it is already configured).

The results in Table 2 clearly indicate an average perfor-
mance gap increases by 40% when comparing RCOnline-
Enh. to RCOnline. The performance gap drops to −6%
compared to RCOffline. This is a significant improvement,
taking into account the fact that RCOnline-Enh. is an online
scheduler that requires a small CPU time compared to the
RCOffline. The RCOnline-Enh. performance is improved
dramatically following the learning phase, as shown in
Table 3. The RCOnline-Enh. performance gap was 49% of
RCOnline and 2%of RCOffline.The performance is expected
to improve even more if task migration is enabled.

The CPU run-time comparison of RCOnline-Enh. and
RCOffline is shown in Table 4.The tests were performed on a
Red Hat Linux workstation with 6-core Intel Xeon processor,
running at a speed of 3.2 GHz and equipped with 16GB of

International Journal of Reconfigurable Computing 13

+ +

+ +

+ +

Task not available;
reconfiguration is
needed

A task is reused
No reconfiguration
is needed

1 2 3 4 5 6

1 2 3 4 5 6

PRR1 PRR2 PRR2 PRR2

PRR1 PRR2 PRR2 PRR2

RCOnline

RCOnline-Enh.

Check the first task in
the ready queue

Search the ready queue for
task reuse, before issuing a
reconfiguration command

Ready queue

Ready queue

X

−

−−

−−

−

−−

−− × ×

×

×

××

×

×

××

Figure 7: RCOnline versus RCOnline-Enh.

Table 2: Schedulers comparison for total execution time (no learn-
ing).

Benchmark Total execution time Percentage
𝐶off 𝐶on 𝐶enh Δ𝐶 Δ𝐶enh

S1 520 740 540 −30 −4
S2 1160 1750 1220 −34 −5
S3 300 420 340 −29 −12
S4 775 1470 820 −47 −5
S6 160 160 160 0 0
S7 420 860 500 −51 −16
S8 380 500 460 −24 −17
S9 995 1990 1000 −50 −1
S10 1095 3000 1140 −64 −4
S11 920 1430 1000 −36 −8
DFG2 680 800 584 −15 16
DFG6 325 340 359 −4 −9
DFG7 405 600 481 −33 −16
DFG12 745 910 761 −18 −2
DFG14 140 160 142 −13 −1
DFG16 295 403 383 −27 −23
DFG19 455 540 460 −16 −1
Average 575 945 609 −29 −6

RAM. The RCOnline-Enh. is on average 10 times faster than
the RCOffline.

4.4.2. Hardware Task Reuse. Tables 5 and 6 show the number
of reused hardware tasks prior to the learning phase and
after learning phase, respectively. Hardware task reuse tends
to reduce the number of required reconfigurations and,
hence, total execution time. It is clear from the tables that
the amount of hardware task reuse was improved with
RCOnline-Enh. Obviously, this contributed to a reduction
in the total execution time. Table 6 shows the benefit of the

Table 3: Schedulers comparison for total execution time (after
learning phase).

Benchmark Total execution time Percentage
𝐶off 𝐶on 𝐶enh Δ𝐶 Δ𝐶enh

S1 500 660 520 −24 −4
S2 1140 1690 1160 −33 −2
S3 280 390 280 −28 0
S4 755 1370 660 −45 14
S6 140 140 120 0 17
S7 400 700 430 −43 −7
S8 360 440 345 −18 4
S9 975 1950 950 −50 3
S10 1075 2620 1075 −59 0
S11 900 1230 866 −27 4
DFG2 660 830 584 −20 13
DFG6 305 360 322 −15 −5
DFG7 385 555 436 −31 −12
DFG12 725 870 723 −17 0
DFG14 120 160 103 −25 17
DFG16 275 380 288 −28 −5
DFG19 435 540 460 −19 −5
Average 555 876 548 −28 2

learning phase which tends to increase the variety of the
available reconfigured tasks.

The RCOnline-Enh. has on average 172% and 158%more
hardware reuse than RCOnline prior to and following the
learning phase, respectively. RCOnline-Enh. exceeded the
amount of hardware reuse over RCOffline after the learning
phase by 104%, and it reached 87% of the hardware reuse
without learning. RCOffline is able to prefetch tasks, which
influences the amount of reuse. All results presented in
this section were based on scheduling tasks within a DFG
using a single type of architecture per task and based on
a fixed single floorplan. The next section shows how these

14 International Journal of Reconfigurable Computing

Table 4: Run-time comparison of RCOffline and RCOnline-Enh.

Benchmark Time in (ms) Speedup
(𝑋 times)RCOffline RCOnline-Enh.

S1 12 1.52 7.9
S2 59 9.14 6.4
S3 5 0.418 12
S4 29 2.03 14.3
S6 2 0.116 17.0
S7 8 1.31 6.0
S8 5 0.614 8.0
S9 58 6.28 9.2
S10 110 9.74 11.3
S11 31 4.98 6.2
DFG2 12 0.829 14.5
DFG6 3 0.553 5.4
DFG7 7 1.15 6.1
DFG12 29 3.69 7.9
DFG14 2 0.111 18.0
DFG16 3 0.754 3.9
DFG19 12 1.39 8.6
Average 23 3 9.5

Table 5: Comparison of schedulers based on number of reused tasks
(before learning).

Benchmark Number HW task reuse Percentage
𝐶off 𝐶on 𝐶enh Δ𝐶 Δ𝐶enh

S1 38 22 37 −42 −3
S2 139 74 128 −47 −8
S3 17 6 10 −65 −41
S4 74 28 67 −62 −9
S6 5 4 4 −20 −20
S7 36 8 27 −78 −25
S8 18 9 14 −50 −22
S9 128 53 118 −59 −8
S10 181 54 173 −70 −4
S11 88 40 78 −55 −11
DFG2 37 23 38 −38 3
DFG6 21 19 19 −10 −10
DFG7 49 36 42 −27 −14
DFG12 86 72 84 −16 −2
DFG14 7 4 5 −43 −29
DFG16 32 26 26 −19 −19
DFG19 50 42 49 −16 −2
Average 59 31 54 −42 −13

schedulers can be used as part of a multiobjective framework
to determine the most appropriate architecture from a set
of variant architectures for a given task. The framework
proposed in the next section not only is capable of optimizing
the selection of the architecture for a task within a DFG,

Table 6: Comparison of schedulers based onnumber of reused tasks
(after learning).

Benchmark Number or task reuse Percentage
𝐶off 𝐶on 𝐶enh Δ𝐶 Δ𝐶enh

S1 38 26 41 −32 8
S2 139 79 131 −43 −6
S3 17 10 13 −41 −24
S4 74 33 79 −55 7
S6 5 8 8 60 60
S7 36 17 31 −53 −14
S8 18 13 21 −28 17
S9 128 56 123 −56 −4
S10 181 74 183 −59 1
S11 88 51 90 −42 2
DFG2 37 24 38 −35 3
DFG6 21 20 22 −5 5
DFG7 49 38 48 −22 −2
DFG12 86 73 85 −15 −1
DFG14 7 5 8 −29 14
DFG16 32 27 32 −16 0
DFG19 50 42 49 −16 −2
Average 59 35 59 −29 4

but also can determine the most appropriate reconfigurable
floorplan/platform for the application.

4.4.3. Comparison with Online Schedulers. Table 7 presents a
comparison between RCOnline-Enh. and two other efficient
scheduling algorithms (RCSched-I and RCSched-II) that
were published in [7]. Both RCSched-I and RCSched-II
nominate free (i.e., inactive or currently not running) PRRs
for the next ready task. If all PRRs are busy and the GPP
is free, the scheduler attempts to migrate the ready task
(i.e., the first task in the ready queue) by changing the
task type from hardware to software. Busy PRRs, unlike
free PRRs, accommodate hardware tasks that are active (i.e.,
running). The two algorithms differ with respect to the
way the next PRR is nominated. Results obtained indicate
that RCOnline-Enh. has on average 327% more hardware
reuse than RCSched-I and 203% more hardware reuse than
RCSched-II. Table 7 also indicates that the performance gap
in terms of total execution time between RCSched-I and
RCOnline-Enh. is, on average, 53% and that between the
latter and RCSched-II is 43%.

5. Execution Unit Allocation

Optimizing the hardware architecture (alternative execution
units) for a specific task in a DFG is an NP-hard problem
[3].Therefore, in this section, an efficientmetaheuristic based
technique is proposed to select the type of execution units
(implementation variants) needed for a specific task. The
proposed approach uses an Island Based Genetic Algorithm
(IBGA) as an optimization based technique.

International Journal of Reconfigurable Computing 15

Table 7: Comparison of schedulers based on execution time and number of hardware reused tasks.

Benchmark RCSched-I RCSched-II RCOnline-Enh.
Total ex. time # of reuse Total ex. time # of reuse Total ex. time # of reuse

S1 867 10 740 19 520 41
S2 2466 35 1767 68 1160 131
S3 478 3 441 5 280 13
S4 1773 13 1508 26 660 79
S6 201 2 160 4 120 8
S7 896 6 818 10 430 31
S8 583 5 503 9 345 21
S9 2697 17 2417 44 950 123
S10 3589 22 2887 57 1075 183
S11 1735 21 1293 42 866 90
DFG2 912 18 827 22 584 38
DFG6 390 18 358 19 322 22
DFG7 701 32 596 36 436 48
DFG12 1270 51 879 66 723 85
DFG14 183 4 162 4 103 8
DFG16 469 23 403 26 288 32
DFG19 738 31 560 39 460 49
Average 1173 18 960 29 548 59

The main feature of an IBGA is that each population of
individuals (i.e., set of candidate solutions) is divided into
several subpopulations, called islands. All traditional genetic
operators, such as crossover, mutation, and selection, are
performed separately on each island. Some individuals are
selected from each island and migrated to different islands
periodically. In our proposed Island Based Genetic Algorithm
(GA), no migration is performed among the different sub-
populations to preserve the solution quality of each island,
since each island is based on a different (unique) floorplan as
will be explained later on. The novel idea here is to aggregate
the results obtained from the Pareto fronts of each island to
enhance the overall solution quality. Each solution on the
Pareto front tends to optimize multiple objectives including
power consumption and speed. However, each island tends to
optimize this multiobjective optimization problem based on
a distinct platform (floorplan).The IBGA approach proposed
utilizes the framework presented in [7] to evaluate the
solutions created in addition to the reconfigurable simulator
presented earlier in Section 3.2.

5.1. Single Island GA. The Single Island GA optimization
module consists of four main components: an architecture
library, Population Generation module, a GA Engine, and a
Fitness Evaluation module (online scheduler), as shown in
Figure 8. The architecture library stores all of the different
available architectures (execution units) for every task type.
Architectures vary in execution time, area, reconfiguration
time, and power consumption. For example, a multiplier can
have serial, semiparallel, or parallel implementation. Each
GA module tends to optimize several criteria (objectives)
based on a single fixed floorplan/platform.

The initial population generator uses a given task graph
along with the architecture library to generate a diverse initial

population of task graphs, as demonstrated by Figure 8. Each
possible solution (chromosome) of the population assembles
the same DFG with one execution unit (architecture) bound
to each task. The Genetic Algorithm Engine manipulates the
initial population by creating new solutions using several
recombination operators in the form of crossover and muta-
tion. New solutions created are evaluated and the most fit
solution replaces the least fit. These iterations will continue
for a specified number of generations or until no further
improvement in solution quality is achieved. The fourth
component, fitness function, evaluates each solution based on
specific criteria. The fitness function used in the proposed
model is based on the online reconfigurable scheduler pre-
sented earlier that schedules each task graph and returns the
time and overall power consumed by the DFG to the GA
Engine.

5.1.1. Initial Population. The initial population represents the
solution space that the GA will use to search for the best
solution. The initial population can be generated randomly
or partially seeded using known solutions and it needs to
be as diverse as possible. In our framework, we evaluated
the system with different population sizes that varied from a
population equal to the number of nodes in the (input) DFG
to five times the number of nodes of the input DFGs.
Chromosome Representation. Every (solution) individual in
the population is represented using a bit string known as a
chromosome. Each chromosome consists of genes. In our
formulation, we choose to use a gene for each of theN tasks in
the task graph; each gene represents the choice of a particular
implementation variant (as an integer value). A task graph
is mapped to a chromosome, where each gene represents an
operation within the DFG using a specific execution unit, as
shown in Figure 9.

16 International Journal of Reconfigurable Computing

Multiple execution units per task

Task
assignment

Initial population

Pareto front

Power

GA Engine

Parameters tuning
(i) Crossover
(ii) Mutation
(iii) Selection method
(iv) Replacement tech.

Architecture library

Evaluation module

Online scheduler

Platform

+

+

+

+

+ +

+

++

+
+

+

+

+

+
+

+
+ +

+

+

+

+

+

∗

∗

∗

∗

∗ ∗
∗ ∗

∗
∗ ∗

∗

?
?E

E

AA

A
A

B

B

B C

C

Ti
m

e

Figure 8: A Single Island GA module.

1

1

2

2

3

3

4

4

5

5

6

6+

+

+

+

+ +++
+

∗

∗∗∗

∗ ∗
Arch

Task

Chromosome

A AA B B C

A

A

A

B

B

C

C

Task

Task type library

FFT

NA

A B NA

−

Architectures

Figure 9: Task graph to chromosome mapping (binding/allocation).

5.1.2. Fitness Function. The fitness of any given chromosome
is calculated and used by the Genetic Algorithm Engine as
a single figure of merit. In our proposed framework, the
fitness function is based on the outcome of a scheduler which
takes each chromosome and uses it to construct a schedule.
The scheduler then returns a value representing time, power,
or a weighted average of both values. The quality of the
scheduling algorithms implemented can have a significant
impact on the final performance of applications running on a
reconfigurable computing platform. The overall time it takes
to run a set of tasks on the same platform could vary using
different schedulers. Power consumption, reconfiguration
time, and other factors can also be used as metrics to evaluate
schedulers.The RCOnline scheduler described in Section 4.2
is used to evaluate each chromosome as part of the fitness
function, in the GA framework. The results summarized in
this section are based on the RCOnline scheduler presented
earlier.

5.2. Island BasedGA. Theproposed Island BasedGA consists
of multiple GA modules as shown in Figure 10. Each GA

module produces a Pareto front based on power and perfor-
mance (execution time) for a unique platform. An aggregated
Pareto front is then constructed from all the GAs to give
the user a framework that optimizes not only power and
performance, but also the most suitable platform (floorplan).
A platform in this case includes the number, size, and layout
of the PRRs.

The proposed framework simultaneously sends the same
DFG to every GA island, as shown in Figure 10. The islands
then run in parallel to optimize for performance and power
consumption for each platform. Running multiple GAs in
parallel helps in reducing processing time.The chromosomes
in each island which represent an allocation of execution
units (implementation variant) and binding of units to tasks
are used to build a feasible near-optimal schedule. The
schedule, allocation, and binding are then evaluated by the
simulator to determine the associated power consumed and
total execution time. These values are fed back to the GA as
a measure of fitness of different solutions in the population.
The GA seeks to minimize a weighted sum of performance
and power consumption (2). The value of𝑊 determines the

International Journal of Reconfigurable Computing 17

GA

GA

GA

GA

island 1

Platform A

island 2

Platform B

island 3

Platform C

island 4

Platform D

Pareto front

Power

Power

Power

Power

Power

Ti
m

e
Ti

m
e

Ti
m

e
Ti

m
e

Aggregated
Pareto front

Aggregated
Pareto front

Platform B

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

A A
B

B
C

E ?
?

Multiple execution units per task

Figure 10: An Island Based GA (IBGA) framework.

weight of each objective. For example, a value of one indicates
that the GA should optimize for performance only, while a
value of 0.5 gives equal emphasis on performance and speed
(assuming the values of speed and power are normalized):

fitness value = power ∗ (1 −𝑊) + exec. time ∗𝑊. (2)

Every island produces a separate Pareto front for a
different platform in parallel. An aggregation module then
combines all the Pareto fronts into an aggregated measure
that gives not only a near-optimal performance and power,
but also the hardware platform (floorplan) associatedwith the
solution. Each island generates the Pareto front by varying the
value of𝑊 in (2) from 0.0 to 1.0 in step sizes of 0.1.

5.2.1. Power Measurements. Real-time power measurements
were initially performed using the Xilinx VC707 board [35].

The Texas Instrument (TI) power controllers along with TI
dongle and a monitoring station were used to perform the
power measurement. Other measurements were calculated
using Xilinx XPower software.

5.2.2. IBGA Example. In this section, we introduce a detailed
example of the IBGA framework. Benchmark S3 will be
used to illustrate how the IBGA module operates as shown
in Figure 11. The S3 benchmark is a synthetic benchmark
with 25 nodes and 8 different task types. Each task has
between 2 and 5 different architecture variants (i.e., hardware
implementation).

(i) Manual Assignment. As shown in Figure 11(a), each
node is manually assigned a random hardware task
variant and the platform (PRR layout) is manually
selected as well. The total execution time in this case

18 International Journal of Reconfigurable Computing

Benchmark = S3
Number of task types = 8

Number of nodes = 25

Node: 1 · · · 25

3310

Total execution time

Manual selection of
platform and task variant

Architecture: 2112133211332222112311223

Task variant assignment

Number of architecture variant per task = (2–5)

PR
R1

PR
R2

PR
R3

[1]

[5]

[7]

[0]

[9]

[6]

[2]

[10]

[19] [20]

[24] [22]
T1

T4

T2

T2

T6

T6

[15] [14]

T6

[13]

T6
[21]

T3
[23]

T1T6

T8

[12]

T4
[11]

T1

T4

[16]

T8

[18]

T8

T8

[17]

T4

T3

T3

[3] [4]

[8]

T5

T2

T7

T7

(a)

Node: 1 · · · 25
Total execution time

Single-GA

Task variant assignment

2126Architecture: 2533215124431321121115213

[1]

[5]

[7]

[0]

[9]

[6]

[2]

[10]

[19] [20]

[24] [22]
T1

T4

T2

T2

T6

T6

[15] [14]

T6

[13]

T6
[21]

T3
[23]

T1T6

T8

[12]

T4
[11]

T1

T4

[16]

T8

[18]

T8

T8

[17]

T4

T3

T3

[3] [4]

[8]

T5

T2

T7

T7

PR
R1

PR
R2

PR
R3

(b)

Node: 1 · · · 25

Total execution time

PR
R5

593
Task variant assignment

Architecture: 2121121123411112111113213

Island Based
GA

PR
R1

[1]

[5]

[7]

[0]

[9]

[6]

[2]

[10]

[19] [20]

[24] [22]
T1

T4

T2

T2

T6

T6

[15] [14]

T6

[13]

T6
[21]

T3
[23]

T1T6

T8

[12]

T4
[11]

T1

T4

[16]

T8

[18]

T8

T8

[17]

T4

T3

T3

[3] [4]

[8]

T5

T2

T7

T7

PR
R2

PR
R3

PR
R4

(c)

Figure 11: IBGA example.

International Journal of Reconfigurable Computing 19

PR
R1

PR
R2

PR
R3

Uniform Uniform Nonuniform

Nonuniform

P1 P2 P3

P4

PR
R1

PR
R2

PR
R3

PR
R1

PR
R2

PR
R3

PR
R4

PR
R5 PR

R1

PR
R2

PR
R3

PR
R4

PR
R5

PR
R4

PR
R5

PR
R6

PR
R7

PR
R8

Figure 12: Platforms with different floorplans.

Table 8: Resource utilization of different multiplier implementa-
tion.

Resources Arch 1 Arch 2 Arch 3
Slices 17 72 114
LUT 30 126 200

is 3310 cycles. The execution time will be used as a
baseline for the next two cases.

(ii) Single-GA. Figure 11(b) shows the single-GA
approach. This approach produces different task
bindings than that of the manual assignment.
Despite using the same platform of previous manual
assignment, the different bindings lead to a more
optimized DFG (lower total execution time). The
performance increases by 36% over the manual task
assignment.

(iii) Island Based GA. This approach is shown in
Figure 11(c), where task binding is optimized over
multiple platforms. The DFG has different task
bindings than the two previous cases and uses a
different platform. As a result, the performance
dramatically increases (the total execution reduces
from 3310 cycles to 593). The IBGA produces four
different architecture bindings for each platform, as
shown in Figure 12. Each number represents an index
to the selected execution unit (architecture) and the
location of the integer represents the node number.

Architecture binding for each platform (P1–P4), for the
S3 benchmark, is as follows:

P1: 2533215124431321121115213.

P2: 2533215124431321121115213.

P3: 2322231111431211111313212.

P4: 1322221114431111111111112.

Table 8 shows the resource utilization of different mul-
tiplier implementation used in the example presented in
Figure 11. Table 9 shows the resource available in a PRR
and resources used by an adder in uniform implementation.

P1
P2

P3
P4

10 20 30 40 50 60 70 80 90 1000
Generation

2000

4000

6000

8000

10000

12000

14000

Fi
tn

es
s

Generation versus fitness average convergence
for (S2) benchmark

Figure 13: Convergence of synthesized benchmark S2.

P1
P2

P3
P4

500

1000

1500

2000

2500

3000

3500

4000

Fi
tn

es
s

10 20 30 40 50 60 70 80 90 1000
Generation

Generation versus fitness average convergence
for (DFG16) benchmark

Figure 14: Convergence of MediaBench benchmark (DFG16).

20 International Journal of Reconfigurable Computing

Pareto front for the different GA islands for benchmark S2

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

P1 P2

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

P3

Ex
ec

ut
io

n
tim

e (
1/

10
00

 cy
cle

)

P4

Ex
ec

ut
io

n
tim

e (
1/

10
00

 cy
cle

)
Ex

ec
ut

io
n

tim
e (

1/
10

00
 cy

cle
)

Ex
ec

ut
io

n
tim

e (
1/

10
00

 cy
cle

)
Ex

ec
ut

io
n

tim
e (

1/
10

00
 cy

cle
)

All platforms

P1

P2
P3

P4

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.00.0
Power (mW)

8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0

2.0 4.0 6.0 8.0 10.0 12.00.0
Power (mW)

8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0

8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0

8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.00.0
Power (mW)

8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0

Power (mW)

Power (mW)

Figure 15: Aggregated Pareto front (time versus power) for synthesized benchmark (S2).

Table 9: Resources utilization of an adder in a PRR for the uniform
implementation (Virtex-V).

Site type Available Required Utilization %
LUT 240 32 14
FD LD 240 32 14
SliceL 30 5 17
SliceM 30 5 17
DSP48E 4 0 0

Table 10 shows the resources available in the Virtex-V FPGA
operating at 100MHz along with the resources occupied by
the complete system.

5.3. Results. In this section, we first describe our experimen-
tal setup and then present results based on the proposed
Island Based GA framework. As the GA is stochastic by
nature, it was run 10 times for each benchmark. Solution qual-
ity was then evaluated in terms of average results produced.
The run-time performance of the IBGA based on serial and

Table 10: Resources utilization for the system on a Virtex-V FPGA
(XC5VFX70T), freq. 100MHz.

Resources Utilization Available Utilization %
Register 12022 44800 26
LUT 11176 44800 24
Slice 6282 11200 56
IO 237 640 37
BSCAN 1 4 25
BUFIO 8 80 10
DCM ADV 1 12 8
DSP48E 6 128 4
ICAP 1 2 50
Global clock buffer 6 32 18

parallel implementation is shown in Table 11. The IBGA was
tested on a RedHat Linux workstation with 6-core Intel Xeon
processor, running at a speed of 3.2 GHz and equipped with
16GB of RAM.

International Journal of Reconfigurable Computing 21

P1
P2

P3

P4

Pareto front for the different GA islands for benchmark DFG16

P1 P2

P3 P4

All platforms

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ex
ec

ut
io

n
tim

e (
1/

10
00

 cy
cle

)

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Ex
ec

ut
io

n
tim

e (
1/

10
00

 cy
cle

)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ex
ec

ut
io

n
tim

e (
1/

10
00

 cy
cle

)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ex
ec

ut
io

n
tim

e (
1/

10
00

 cy
cle

)

1.0 2.0 3.0 4.0 5.0 6.00.0
Power (mW)

0.2 0.4 0.6 0.8 1.0 1.2 1.40.0
Power (mW)

0.5 1.0 1.5 2.0 2.50.0
Power (mW)

1.0 2.0 3.0 4.0 5.0 6.00.0
Power (mW)

1.0 2.0 3.0 4.0 5.0 6.00.0
Power (mW)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ex
ec

ut
io

n
tim

e (
1/

10
00

 cy
cle

)

Figure 16: Aggregated Pareto front (time versus power) for MediaBench benchmark (DFG16).

Table 11: IBGA run-time for serial and parallel implementation.

DFG Time (min:sec) Speedup
(𝑋 times)Serial Parallel

S1 00:52 00:17 3.1
S2 04:53 01:41 2.9
S3 00:23 00:10 2.3
S4 03:06 01:16 2.5
S5 00:07 00:02 3.0
DFG2 01:12 00:28 2.6
DFG6 00:12 00:08 1.5
DFG7 00:35 00:13 2.7
DFG12 02:45 00:52 3.2
DFG14 00:05 00:02 2.5
DFG16 00:26 00:09 2.9
DFG19 01:13 00:23 3.2

5.3.1. Convergence of Island Based GA. The benchmarks were
tested on the proposed Island GA framework using four

Table 12: The average of 10 runs for the best fitness values.

Benchmark No opt. 1-GA IBGA
S1 4435.7 1847 978.2
S2 12514.7 4288.3 2244.4
S3 2649.95 1973 660.9
S4 8474.23 3856 1792.4
S5 1392 877 286
DFG2 5452.67 2554.1 1036.1
DFG6 2942.99 1217.9 406.1
DFG7 4558.4 1303.2 582.4
DFG12 9249.97 2595.9 1218.1
DFG14 1134.13 735 341.5
DFG16 3614.28 1301.1 505.2
DFG19 5805.24 2368.4 1528.1

islands. Each island targeted a different FPGA platform
(floorplan) that was generated manually. Each platform is
distinct in terms of the number, size, and layout of the
PRRs. An example is shown in Figure 12. Platforms 𝑃

1
and

22 International Journal of Reconfigurable Computing

Table 13: Fitness values for different weights (𝑊).

Weight 𝑊 = 0.5 𝑊 = 0.7 𝑊 = 0.875 𝑊 = 1 (performance)
Bench. No opt. 1-GA IBGA No opt. 1-GA IBGA No opt. 1-GA IBGA No opt. 1-GA IBGA
S1 3327 2280 1469 3917 2134 1266 4435.7 1847 978.2 4661 1601 796
S2 9483 5731 4351 11034 4872 3331 12514.7 4288.3 2244.4 13457 3724 1604
S3 1894 1517 825 2303 1760 734 2649.95 1973 660.9 2914 2126 588
S4 6286 4000 2747 7470 3890 2277 8474.23 3856 1792.4 9226 3715 1366
S5 954 684 335 1194 790 300 1392 877 286 1550 940 290
DFG2 3749 2237 1324 4673 2450 1189 5452.67 2554.1 1036.1 6025 2582 903
DFG6 1851 906 387 2434 1073 409 2942.99 1217.9 406.1 3306 1320 396
DFG7 2880 1148 668 3792 1231 640 4558.4 1303.2 582.4 5147 1324 537
DFG12 5891 2400 1432 7722 2609 1342 9249.97 2595.9 1218.1 10415 2886 1044
DFG14 775 557 338 963 656 345 1134.13 735 341.5 1249 785 340
DFG16 2274 1003 446 2976 1166 505 3614.28 1301.1 505.2 4095 1392 507
DFG19 4588 3152 2308 5232 2743 1907 5805.24 2368.4 1528.1 6146 2186 1197

𝑃
2
have uniform size distribution, while platforms 𝑃

3
and

𝑃
4
on the other hand have nonuniform size distributions.

Despite the fact that the four islands are optimizing the
same task graph they converge to different solutions, since
they are targeting different floorplans on the same FPGA
architecture. Figures 13 and 14 show the convergence of the
fitness values for two different sample benchmarks, synthetic
and MediaBench, for an average of 10 runs.

5.3.2. The Pareto Front of Island GA Framework. The pro-
posed multiobjective Island Based GA optimizes for execu-
tion time and/or power consumption. Since the objective
functions are conflicting, a set of Pareto optimal solutionswas
generated for every benchmark, as discussed in Section 5.2.

Figures 15 and 16 show thePareto fronts obtained for both
synthetic and MediaBench benchmarks, respectively, based
on an average of 10 runs. The Pareto solutions obtained by
each island (P1 to P4) are displayed individually along with
the aggregated Pareto front for each benchmark. It is clear
from the figures that each GA island produces a different and
unique Pareto front that optimizes performance and power
for the targeted platform. On the other hand, the aggregated
solution based on the four GA islands combines the best
solutions and thus improves upon the solutions obtained by
the individual GA Pareto fronts. Hence, the system/designer
can choose the most appropriate platform based on the
desired objective function.

Table 12 compares the best fitness values of the randomly
binding architecture with no optimization (No opt.) to that
using a single-GA approach (1-GA) along with the proposed
aggregated Pareto optimal point approach based on four
islands (IBGA). Each value in Table 12 is based on the average
of 10 different runs. The single-GA implementation achieves
on average 55.9% improvement over the baseline nonopti-
mized approach, while the Island Based GA achieves on aver-
age 80.7% improvement.The latter achieves on average 55.2%
improvement over the single-GA approach. Table 13 shows
the fitness values based ondifferentweight values (introduced
in (2)) for randomly binding architectures (No opt.), a single-
GA (1-GA), and an Island Based GA (IBGA). On average the

Table 14: Exhaustive versus IBGA (average of 10 runs).

Benchmarks IBGA Exhaustive search
Fitness Time (sec) Fitness Time (min)

DFG14 (11
nodes) 341 1.8 313 5.8

S5 (13 nodes) 286 2.4 283 257

single-GA implementation achieves 52.7% improvement over
the baseline nonoptimized approach, while the Island Based
GA achieves on average 75% improvement.

Table 14 compares the IBGA with an exhaustive proce-
dure in terms of quality of solution and CPU time. Only
two small benchmarks are used due to the combinatorial
explosion of the CPU time when using the exhaustive search
based procedure. It is clear from Table 14 that the IBGA
technique produces near-optimal solutions for these small
benchmarks. The DFG14 (11 nodes) is 9% inferior to the
optimal solution, while S5 (13 nodes) is 1% away from
optimality.

6. Conclusions and Future Work

In this paper, we presented an efficient reconfigurable
online scheduler that takes PRR size and other mea-
sures into account within a reconfigurable OS framework.
The scheduler is evaluated and compared with a baseline
reconfigurable-aware offline scheduler.Themain objective of
the proposed scheduler is to minimize the total execution
time for the incoming task graph. The proposed scheduler
supports hardware task reuse and software-to-hardware task
migration. RCOnline learns about task types from previ-
ous history and its performance tends to improve over-
time. RCOnline-Enh. further improves upon RCOnline and
searches the ready queue for a task that can exploit hardware
task reuse. RCOnline-Enh. has exceptionally good perfor-
mance since on average it reached 87% of the performance of
RCOffline scheduler, without the learning phase, and 104%of
RCOffline scheduler following the learning phase. In addition

International Journal of Reconfigurable Computing 23

to the proposed schedulers, a novel parallel Island Based
GA approach was designed and implemented to efficiently
map execution units to task graphs for partial dynamic
reconfigurable systems. Unlike previous works, our approach
is multiobjective and not only seeks to optimize speed
and power, but also seeks to select the best reconfigurable
floorplan. Our algorithm was tested using both synthetic and
real-world benchmarks. Experimental results clearly indicate
the effectiveness of this approach for solving the problem
where the proposed Island Based GA framework achieved on
average 55.2% improvement over single-GA implementation
and 80.7% improvement over a baseline random allocation
and binding approach.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] K. Eguro, “Automated dynamic reconfiguration for high-
performance regular expression searching,” in Proceedings of
the International Conference on Field-Programmable Technology
(FPT ’09), pp. 455–459, IEEE, Sydney, Australia, December
2009.

[2] Xilinx, Partial Reconfiguration User Guide, UG702, Xilinx, 2010.
[3] M. Huang, V. K. Narayana, M. Bakhouya, J. Gaber, and T. El-

Ghazawi, “Efficient mapping of task graphs onto reconfigurable
hardware using architectural variants,” IEEE Transactions on
Computers, vol. 61, no. 9, pp. 1354–1360, 2012.

[4] M. Huang, V. K. Narayana, and T. El-Ghazawi, “Efficient
mapping of hardware tasks on reconfigurable computers using
libraries of architecture variants,” in Proceedings of the 17th
IEEE Symposium on Field Programmable Custom Computing
Machines (FCCM ’09), pp. 247–250, IEEE, Napa, Calif, USA,
April 2009.

[5] S. Hauck and A. Dehon, Reconfigurable Computing: TheTheory
and Practice of FPGA-Based Computation, Morgan Kaufmann,
Amsterdam, The Netherlands, 2008.

[6] P.-A. Hsiung, M. D. Santambrogio, and C.-H. Huang, Reconfig-
urable System Design and Verification, CRC Press, Boca Raton,
Fla, USA, 2009.

[7] A. Al-Wattar, S. Areibi, and F. Saffih, “Efficient on-line hard-
ware/software task scheduling for dynamic run-time recon-
figurable systems,” in Proceedings of the IEEE Reconfigurable
Architectures Workshop (RAW ’12), pp. 401–406, IEEE, Shang-
hai, China, May 2012.

[8] A. Al-Wattar, S. Areibi, and G. Grewal, “Efficient mapping
and allocation of execution units to task graphs using an
evolutionary framework,” in Proceedings of the International
Symposium on Highly Efficient Accelerators and Reconfigurable
Technologies (HEART ’15), Boston, Mass, USA, June 2015.

[9] A. Al-wattar, S. Areibi, and G. Grewal, “Rcsimulator, a simu-
lator for reconfigurable operating systems,” 2015, https://github
.com/Aalwattar/rcSimulator.

[10] “Island based genetic algorithm for task allocation,” 2015,
https://github.com/Aalwattar/GA-Allocation.

[11] H. Walder and M. Platzner, “A runtime environment for recon-
figurable hardware operating systems,” in Field Programmable

Logic and Application, pp. 831–835, Springer, Berlin, Germany,
2004.

[12] “Reconfigurable hardware operating systems: from design con-
cepts to realizations,” in Proceedings of the 3rd International
Conference on Engineering of Reconfigurable Systems and Archi-
tectures (ERSA ’03), pp. 284–287, CSREA Press, 2003.

[13] R. Pellizzoni andM.Caccamo, “Real-timemanagement of hard-
ware and software tasks for FPGA-based embedded systems,”
IEEE Transactions on Computers, vol. 56, no. 12, pp. 1666–1680,
2007.

[14] F. Ghaffari, B. Miramond, and F. Verdier, “Run-time HW/SW
scheduling of data flow applications on reconfigurable archi-
tectures,” EURASIP Journal on Embedded Systems, vol. 2009,
Article ID 976296, p. 3, 2009.

[15] J. A. Clemente, C. González, J. Resano, and D. Mozos, “A
task graph execution manager for reconfigurable multi-tasking
systems,”Microprocessors andMicrosystems, vol. 34, no. 2–4, pp.
73–83, 2010.

[16] D. Göhringer, M. Hübner, E. Nguepi Zeutebouo, and J. Becker,
“Operating system for runtime reconfigurable multiprocessor
systems,” International Journal of Reconfigurable Computing,
vol. 2011, Article ID 121353, 16 pages, 2011.

[17] D. Göhringer and J. Becker, “High performance reconfigurable
multi-processor-based computing on FPGAs,” in Proceedings
of the IEEE International Symposium on Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW ’10), pp. 1–4,
IEEE, Atlanta, Ga, USA, April 2010.

[18] T.-M. Lee, J. Henkel, and W. Wolf, “Dynamic runtime re-
scheduling allowing multiple implementations of a task for
platform-based designs,” in Proceedings of the Design, Automa-
tion and Test in Europe Conference and Exhibition, pp. 296–301,
Paris, France, March 2002.

[19] W. Fu and K. Compton, “An execution environment for
reconfigurable computing,” in Proceedings of the 13th Annual
IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM ’05), pp. 149–158, IEEE, April 2005.

[20] B. Mei, P. Schaumont, and S. Vernalde, “A hardware-software
partitioning and scheduling algorithm for dynamically recon-
figurable embedded systems,” in Proceedings of the Workshop
on Circuits Systems and Signal Processing (ProRISC ’00), Veld-
hoven, The Netherlands, November-December 2000.

[21] J. Wang and S. M. Loo, “Case study of finite resource optimiza-
tion in fpga using genetic algorithm,” International Journal of
Computer Applications, vol. 17, no. 2, pp. 95–101, 2010.

[22] Y. Qu, J.-P. Soininen, and J. Nurmi, “A genetic algorithm for
scheduling tasks onto dynamically reconfigurable hardware,” in
Proceedings of the IEEE International Symposium onCircuits and
Systems (ISCAS ’07), pp. 161–164, Napa, Calif, USA, May 2007.

[23] R. Chen, P. R. Lewis, and X. Yao, “Temperaturemanagement for
heterogeneous multi-core FPGAs using adaptive evolutionary
multi-objective approaches,” in Proceedings of the IEEE Interna-
tional Conference on Evolvable Systems (ICES ’14), pp. 101–108,
IEEE, Orlando, Fla, USA, December 2014.

[24] A. Elhossini, S. Areibi, and R. Dony, “Strength pareto particle
swarm optimization and hybrid EA-PSO for multi-objective
optimization,” Evolutionary Computation, vol. 18, no. 1, pp. 127–
156, 2010.

[25] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vin-
cent, and F. Wagner, “Random graph generation for scheduling
simulations,” in Proceedings of the 3rd International ICST Con-
ference on Simulation Tools and Techniques, SIMUTools ’10, pp.

24 International Journal of Reconfigurable Computing

60.1–60.10, Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering (ICST), Brussels, Bel-
gium, 2010.

[26] U. Electrical & Computer Engineering Department at the
UCSB, “Express benchmarks,” 2015, http://express.ece.ucsb
.edu/benchmark/.

[27] A. Bilgin and J. Ellson, “Dot (graph description language),”
2008, http://www.graphviz.org/Documentation.php.

[28] G. A. Vera, D. Llamocca, M. S. Pattichis, and J. Lyke, “A dynam-
ically reconfigurable computing model for video processing
applications,” in Proceedings of the 43rd Asilomar Conference
on Signals, Systems and Computers, pp. 327–331, IEEE, Pacific
Grove, Calif, USA, November 2009.

[29] L. Cai, S. Huang, Z. Lou, and H. Peng, “Measurement method
of the system reconfigurability,” Journal of Communications and
Information Sciences, vol. 3, no. 3, pp. 1–13, 2013.

[30] J. A. Clemente, J. Resano, C. González, and D. Mozos, “A Hard-
ware implementation of a run-time scheduler for reconfigurable
systems,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 19, no. 7, pp. 1263–1276, 2011.

[31] C. Steiger, H. Walder, and M. Platzner, “Heuristics for online
scheduling real-time tasks to partially reconfigurable devices,”
in Field-Programmable Logic and Applications: 13th Interna-
tional Conference, FPL 2003, Lisbon, Portugal, September 1–
3, 2003: Proceedings, vol. 2778 of Lecture Notes in Computer
Science, pp. 575–584, Springer, Berlin, Germany, 2003.

[32] Y.-H. Chen and P.-A. Hsiung, “Hardware task scheduling and
placement in operating systems for dynamically reconfigurable
SoC,” in Embedded and Ubiquitous Computing—EUC 2005, vol.
3824, pp. 489–498, Springer, Berlin, Germany, 2005.

[33] F. Redaelli, M. D. Santambrogio, and S. O. Memik, “An ILP
formulation for the task graph scheduling problem tailored to
bi dimensional reconfigurable architectures,” in Proceedings of
the International Conference on Reconfigurable Computing and
FPGAs (ReConFig ’08), pp. 97–102, Cancun, Mexico, December
2008.

[34] F. Redaelli,M.D. Santambrogio, andD. Sciuto, “Task scheduling
with configuration prefetching and anti-fragmentation tech-
niques on dynamically reconfigurable systems,” in Proceedings
of the Design, Automation and Test in Europe (DATE ’08), pp.
519–522, Munich, Germany, March 2008.

[35] Xilinx Inc, Xpower Estimator User Guide, Xilinx Inc, 2010.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

