180 research outputs found

    Anisotropic parabolic equations with variable nonlinearity

    Get PDF
    We study the Dirichlet problem for a class of nonlinear parabolic equations with nonstandard anisotropic growth conditions. Equations of this class generalize the evolutional p(x, t)-Laplacian. We prove theorems of existence and uniqueness of weak solutions in suitable Orlicz-Sobolev spaces, derive global and local in time L∞ bounds for the weak solutions

    Existence and large time behavior for generalized Kelvin-Voigt equations governing nonhomogeneous and incompressible fluids

    Get PDF
    Generalized Kelvin-Voigt equations governing nonhomogeneous and incompressible fluids are considered in this work. We assume that, in the momentum equation, the diffusion and relaxation terms are described by two distinct power-laws. Moreover, we assume that the momentum equation is perturbed by an extra term, which, depending on whether its signal is positive or negative, may account for the presence of a source or a sink within the system. For the associated initial-boundary value problem, we study the existence of weak solutions as well as the large time behavior of the solutions.Portuguese Foundation for Science and Technology: UID/MAT/04561/2019info:eu-repo/semantics/publishedVersio

    The Oberbeck-Boussinesq problem modified by a thermo-absorption term

    Get PDF
    We consider the Oberbeck-Boussinesq problem with an extra coupling, establishing a suitable relation between the velocity and the temperature. Our model involves a system of equations given by the transient Navier-Stokes equations modified by introducing the thermo-absorption term. The model involves also the transient temperature equation with nonlinear diffusion. For the obtained problem, we prove the existence of weak solutions for any N >= 2 and its uniqueness if N = 2. Then, considering a low range of temperature, but upper than the phase changing one, we study several properties related with vanishing in time of the velocity component of the weak solutions. First, assuming the buoyancy forces field extinct after a finite time, we prove the velocity component will extinct in a later finite time, provided the thermo-absorption term is sublinear. In this case, considering a suitable buoyancy forces field which vanishes at some instant of time, we prove the velocity component extinct at the same instant. We prove also that for non-zero buoyancy forces, but decaying at a power time rate, the velocity component decay at analogous power time rates, provided the thermo-absorption term is superlinear. At last, we prove that for a general non-zero bounded buoyancy force, the velocity component exponentially decay in time whether the thermo-absorption term is sub or superlinear. (C) 2011 Elsevier Inc. All rights reserved.FEDER; FCTinfo:eu-repo/semantics/publishedVersio

    Γ-convergence and homogenization of functionals in Sobolev spaces with variable exponents

    Get PDF
    AbstractThis paper is devoted to homogenization and minimization problems for variational functionals in the framework of Sobolev spaces with continuous variable exponents. We assume that the sequence of exponents converges in the uniform metric and that the Lagrangian has a periodic microstructure. Then under natural coerciveness assumptions we prove a Γ-convergence result and, as a consequence, the convergence of minimizers (solutions to the corresponding Euler equations)

    Generalized Navier-Stokes equations with nonlinear anisotropic viscosity

    Get PDF
    The purpose of this work is to study the generalized Navier-Stokes equations with nonlinear viscosity that, in addition, can be fully anisotropic. Existence of very weak solutions is proved for the associated initial and boundary-value problem, supplemented with no-slip boundary conditions. We show that our existence result is optimal in some directions provided there is some compensation in the remaining directions. A particular simplification of the problem studied here, reduces to the Navier-Stokes equations with (linear) anisotropic viscosity used to model either the turbulence or the Ekman layer in atmospheric and oceanic fluid flows.Portuguese Foundation for Science and Technology, PortugalPortuguese Foundation for Science and Technology [UID/MAT/04561/2019][SFRH/BSAB/135242/2017

    A SHOCK LAYER ARISING AS THE SOURCE TERM COLLAPSES IN THE P(X)-LAPLACIAN EQUATION

    Get PDF
    We study the Cauchy–Dirichlet problem for the p(x)-Laplacian equation with a regular finite nonlinear minor term. The minor term depends on a small parameter ε > 0 and, as ε → 0, converges weakly* to the expression incorporating the Dirac delta function, which models a shock (impulsive) loading. We establish that the shock layer, associated with the Dirac delta function, is formed as ε → 0, and that the family of weak solutions of the original problem converges to a solution of a two-scale microscopic-macroscopic model. This model consists of two equations and the set of initial and boundary conditions, so that the ‘outer’ macroscopic solution beyond the shock layer is governed by the usual homogeneous p(x)-Laplacian equation, while the shock layer solution is defined on the microscopic level and obeys the ordinary differential equation derived from the microstructure of the shock layer profile

    A limit model for thermoelectric equations

    Full text link
    We analyze the asymptotic behavior corresponding to the arbitrary high conductivity of the heat in the thermoelectric devices. This work deals with a steady-state multidimensional thermistor problem, considering the Joule effect and both spatial and temperature dependent transport coefficients under some real boundary conditions in accordance with the Seebeck-Peltier-Thomson cross-effects. Our first purpose is that the existence of a weak solution holds true under minimal assumptions on the data, as in particular nonsmooth domains. Two existence results are studied under different assumptions on the electrical conductivity. Their proofs are based on a fixed point argument, compactness methods, and existence and regularity theory for elliptic scalar equations. The second purpose is to show the existence of a limit model illustrating the asymptotic situation.Comment: 20 page

    Homogenized dynamics of stochastic partial differential equations with dynamical boundary conditions

    Full text link
    A microscopic heterogeneous system under random influence is considered. The randomness enters the system at physical boundary of small scale obstacles as well as at the interior of the physical medium. This system is modeled by a stochastic partial differential equation defined on a domain perforated with small holes (obstacles or heterogeneities), together with random dynamical boundary conditions on the boundaries of these small holes. A homogenized macroscopic model for this microscopic heterogeneous stochastic system is derived. This homogenized effective model is a new stochastic partial differential equation defined on a unified domain without small holes, with static boundary condition only. In fact, the random dynamical boundary conditions are homogenized out, but the impact of random forces on the small holes' boundaries is quantified as an extra stochastic term in the homogenized stochastic partial differential equation. Moreover, the validity of the homogenized model is justified by showing that the solutions of the microscopic model converge to those of the effective macroscopic model in probability distribution, as the size of small holes diminishes to zero.Comment: Communications in Mathematical Physics, to appear, 200

    Computing the first eigenpair of the p-Laplacian via inverse iteration of sublinear supersolutions

    Full text link
    We introduce an iterative method for computing the first eigenpair (λp,ep)(\lambda_{p},e_{p}) for the pp-Laplacian operator with homogeneous Dirichlet data as the limit of (μq,uq)(\mu_{q,}u_{q}) as q→p−q\rightarrow p^{-}, where uqu_{q} is the positive solution of the sublinear Lane-Emden equation −Δpuq=μquqq−1-\Delta_{p}u_{q}=\mu_{q}u_{q}^{q-1} with same boundary data. The method is shown to work for any smooth, bounded domain. Solutions to the Lane-Emden problem are obtained through inverse iteration of a super-solution which is derived from the solution to the torsional creep problem. Convergence of uqu_{q} to epe_{p} is in the C1C^{1}-norm and the rate of convergence of μq\mu_{q} to λp\lambda_{p} is at least O(p−q)O(p-q). Numerical evidence is presented.Comment: Section 5 was rewritten. Jed Brown was added as autho
    • …
    corecore