313 research outputs found
The Tree Inclusion Problem: In Linear Space and Faster
Given two rooted, ordered, and labeled trees and the tree inclusion
problem is to determine if can be obtained from by deleting nodes in
. This problem has recently been recognized as an important query primitive
in XML databases. Kilpel\"ainen and Mannila [\emph{SIAM J. Comput. 1995}]
presented the first polynomial time algorithm using quadratic time and space.
Since then several improved results have been obtained for special cases when
and have a small number of leaves or small depth. However, in the worst
case these algorithms still use quadratic time and space. Let , , and
denote the number of nodes, the number of leaves, and the %maximum depth
of a tree . In this paper we show that the tree inclusion
problem can be solved in space and time: O(\min(l_Pn_T, l_Pl_T\log
\log n_T + n_T, \frac{n_Pn_T}{\log n_T} + n_{T}\log n_{T})). This improves or
matches the best known time complexities while using only linear space instead
of quadratic. This is particularly important in practical applications, such as
XML databases, where the space is likely to be a bottleneck.Comment: Minor updates from last tim
Hardness of Exact Distance Queries in Sparse Graphs Through Hub Labeling
A distance labeling scheme is an assignment of bit-labels to the vertices of
an undirected, unweighted graph such that the distance between any pair of
vertices can be decoded solely from their labels. An important class of
distance labeling schemes is that of hub labelings, where a node
stores its distance to the so-called hubs , chosen so that for
any there is belonging to some shortest
path. Notice that for most existing graph classes, the best distance labelling
constructions existing use at some point a hub labeling scheme at least as a
key building block. Our interest lies in hub labelings of sparse graphs, i.e.,
those with , for which we show a lowerbound of
for the average size of the hubsets.
Additionally, we show a hub-labeling construction for sparse graphs of average
size for some , where is the
so-called Ruzsa-Szemer{\'e}di function, linked to structure of induced
matchings in dense graphs. This implies that further improving the lower bound
on hub labeling size to would require a
breakthrough in the study of lower bounds on , which have resisted
substantial improvement in the last 70 years. For general distance labeling of
sparse graphs, we show a lowerbound of , where is the communication complexity of the
Sum-Index problem over . Our results suggest that the best achievable
hub-label size and distance-label size in sparse graphs may be
for some
Squarepants in a Tree: Sum of Subtree Clustering and Hyperbolic Pants Decomposition
We provide efficient constant factor approximation algorithms for the
problems of finding a hierarchical clustering of a point set in any metric
space, minimizing the sum of minimimum spanning tree lengths within each
cluster, and in the hyperbolic or Euclidean planes, minimizing the sum of
cluster perimeters. Our algorithms for the hyperbolic and Euclidean planes can
also be used to provide a pants decomposition, that is, a set of disjoint
simple closed curves partitioning the plane minus the input points into subsets
with exactly three boundary components, with approximately minimum total
length. In the Euclidean case, these curves are squares; in the hyperbolic
case, they combine our Euclidean square pants decomposition with our tree
clustering method for general metric spaces.Comment: 22 pages, 14 figures. This version replaces the proof of what is now
Lemma 5.2, as the previous proof was erroneou
A simple and optimal ancestry labeling scheme for trees
We present a ancestry labeling scheme for trees. The
problem was first presented by Kannan et al. [STOC 88'] along with a simple solution. Motivated by applications to XML files, the label size was
improved incrementally over the course of more than 20 years by a series of
papers. The last, due to Fraigniaud and Korman [STOC 10'], presented an
asymptotically optimal labeling scheme using
non-trivial tree-decomposition techniques. By providing a framework
generalizing interval based labeling schemes, we obtain a simple, yet
asymptotically optimal solution to the problem. Furthermore, our labeling
scheme is attained by a small modification of the original solution.Comment: 12 pages, 1 figure. To appear at ICALP'1
2-Vertex Connectivity in Directed Graphs
We complement our study of 2-connectivity in directed graphs, by considering
the computation of the following 2-vertex-connectivity relations: We say that
two vertices v and w are 2-vertex-connected if there are two internally
vertex-disjoint paths from v to w and two internally vertex-disjoint paths from
w to v. We also say that v and w are vertex-resilient if the removal of any
vertex different from v and w leaves v and w in the same strongly connected
component. We show how to compute the above relations in linear time so that we
can report in constant time if two vertices are 2-vertex-connected or if they
are vertex-resilient. We also show how to compute in linear time a sparse
certificate for these relations, i.e., a subgraph of the input graph that has
O(n) edges and maintains the same 2-vertex-connectivity and vertex-resilience
relations as the input graph, where n is the number of vertices.Comment: arXiv admin note: substantial text overlap with arXiv:1407.304
Compressed Subsequence Matching and Packed Tree Coloring
We present a new algorithm for subsequence matching in grammar compressed
strings. Given a grammar of size compressing a string of size and a
pattern string of size over an alphabet of size , our algorithm
uses space and or time. Here
is the word size and is the number of occurrences of the pattern. Our
algorithm uses less space than previous algorithms and is also faster for
occurrences. The algorithm uses a new data structure
that allows us to efficiently find the next occurrence of a given character
after a given position in a compressed string. This data structure in turn is
based on a new data structure for the tree color problem, where the node colors
are packed in bit strings.Comment: To appear at CPM '1
Labeling Schemes for Bounded Degree Graphs
We investigate adjacency labeling schemes for graphs of bounded degree
. In particular, we present an optimal (up to an additive
constant) adjacency labeling scheme for bounded degree trees.
The latter scheme is derived from a labeling scheme for bounded degree
outerplanar graphs. Our results complement a similar bound recently obtained
for bounded depth trees [Fraigniaud and Korman, SODA 10], and may provide new
insights for closing the long standing gap for adjacency in trees [Alstrup and
Rauhe, FOCS 02]. We also provide improved labeling schemes for bounded degree
planar graphs. Finally, we use combinatorial number systems and present an
improved adjacency labeling schemes for graphs of bounded degree with
Tree Compression with Top Trees Revisited
We revisit tree compression with top trees (Bille et al, ICALP'13) and
present several improvements to the compressor and its analysis. By
significantly reducing the amount of information stored and guiding the
compression step using a RePair-inspired heuristic, we obtain a fast compressor
achieving good compression ratios, addressing an open problem posed by Bille et
al. We show how, with relatively small overhead, the compressed file can be
converted into an in-memory representation that supports basic navigation
operations in worst-case logarithmic time without decompression. We also show a
much improved worst-case bound on the size of the output of top-tree
compression (answering an open question posed in a talk on this algorithm by
Weimann in 2012).Comment: SEA 201
A simpler and more efficient algorithm for the next-to-shortest path problem
Given an undirected graph with positive edge lengths and two
vertices and , the next-to-shortest path problem is to find an -path
which length is minimum amongst all -paths strictly longer than the
shortest path length. In this paper we show that the problem can be solved in
linear time if the distances from and to all other vertices are given.
Particularly our new algorithm runs in time for general
graphs, which improves the previous result of time for sparse
graphs, and takes only linear time for unweighted graphs, planar graphs, and
graphs with positive integer edge lengths.Comment: Partial result appeared in COCOA201
- …