

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Compressed Subsequence Matching and Packed Tree Coloring

Bille, Philip; Cording, Patrick Hagge; Gørtz, Inge Li

Published in:
Combinatorial Pattern Matching

Link to article, DOI:
10.1007/978-3-319-07566-2_5

Publication date:
2014

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Bille, P., Cording, P. H., & Gørtz, I. L. (2014). Compressed Subsequence Matching and Packed Tree Coloring.
In A. S. Kulikov, S. O. Kuznetsov, & P. Pevzner (Eds.), Combinatorial Pattern Matching: Proceedings of the 25th
Annual Symposium on Combinatorial Pattern Matching, CPM 2014 (pp. 40-49). Springer. (Lecture Notes in
Computer Science, Vol. 8486). DOI: 10.1007/978-3-319-07566-2_5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/24848086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-319-07566-2_5
http://orbit.dtu.dk/en/publications/compressed-subsequence-matching-and-packed-tree-coloring(ff4807a8-0185-477f-af12-938c59f805e7).html

Compressed Subsequence Matching and
Packed Tree Coloring

Philip Bille?, Patrick Hagge Cording, and Inge Li Gørtz?

Technical University of Denmark, DTU Compute
{phbi,phaco,inge}@dtu.dk

Abstract. We present a new algorithm for subsequence matching in
grammar compressed strings. Given a grammar of size n compressing a
string of size N and a pattern string of size m over an alphabet of size σ,
our algorithm uses O(n+ nσ

w
) space and O(n+ nσ

w
+m logN logw · occ)

or O(n + nσ
w

logw + m logN · occ) time. Here w is the word size and
occ is the number of occurrences of the pattern. Our algorithm uses
less space than previous algorithms and is also faster for occ = o(n

logN
)

occurrences. The algorithm uses a new data structure that allows us to
efficiently find the next occurrence of a given character after a given
position in a compressed string. This data structure in turn is based on
a new data structure for the tree color problem, where the node colors
are packed in bit strings.

1 Introduction

In the compressed subsequence matching problem we are given a grammar S of
size n compressing a string S of size N and a pattern string P of size m over an
alphabet of size σ, and the goal is to find and report the index of all minimal
substrings of S that contain P as a subsequence. A substring is said to be minimal
if shortening it implies that P is no longer a subsequence of that substring. In
this paper we present a new algorithm for compressed subsequence matching
which is space efficient and is faster than the previously fastest algorithm for
a bounded number of occurrences. Our algorithm relies on a method that is
different from the ones used by previous algorithms.

Subsequence matching is useful when searching sequential log data for a
sequence of events that may be separated by other events. Say for instance that
we are running a webserver and we want to know how often a visitor has found
her way to subpage C through page A and then B. We then set P = ABC
and apply a subsequence matching algorithm to the contents of the log file.
Many applications will automatically compress log data to save space, and so
the bottleneck of the procedure becomes decompression of the data. In this
case, processing the data without fully decompressing it, is crucial. Subsequence

? Supported in part by the The Danish Council for Independent Research | Natural
Sciences grant DFF 1323–00178.

matching was also considered in relation to knowledge discovery and data mining
[20].

Several algorithms have been presented for uncompressed strings [6, 10, 12,
14, 15, 20, 27]. The fastest of these is due to Das et al. [15]. Since it is an online
algorithm we may apply it to the compressed version without having to store
the entire decompressed string, and we get an algorithm with running time
O(Nm

logm) that uses O(n + m) space. The first algorithm with time complexity

independent of the size of the string was presented by Cegielski et al. [11] in 2006.
Its runnning time is O(nm2 logm+occ) time and it uses O(nm2) space. Using a
different approach, Tiskin improved the running time to O(nm1.5 +occ) [25] and
later even further to O(nm logm+occ) [26]. The space usage of his algorithms is
O(nm). The most recent improvement is due to Yamamoto et al. [28] who present
an algorithm based on the ideas of Cegielski et al. that runs in O(nm+occ) time
and O(nm) space.

Assume without loss of generality that the compressed string is given as a
Straight Line Program (SLP). An SLP is an acyclic grammar in Chomsky normal
form, i.e., a grammar where each nonterminal production rule expands to two
other rules and generates one string only. SLPs are widely studied because they
model many well-known compression schemes, such as LZ77 [29], LZ78 [30], and
Re-Pair [19] with little overhead [13,22]. The following theorem is the main result
of this work.

Theorem 1. Given an SLP S of size n compressing a string S of size N and a
pattern P of size m over an alphabet of size σ, compressed subsequence matching
can be solved in O(n+ nσ

w) words of space and time

(i) O(n+ nσ
w +m logN logw · occ), or

(ii) O(n+ nσ
w logw +m logN · occ)

in the word RAM model with word size w ≥ logN , and where occ is the number
of minimal occurrences of P in S.

Our new algorithm uses less space (linear in n if σ ≤ w) and is also faster
than the previously fastest algorithm for o(n

logN) occurrences when σ ≤ m. Note
that we can guarantee that the latter requirement always holds by bounding
σ = O(m) using hashing in return for using O(m) additional extra space.

The algorithm is based on the idea of a simple algorithm for subsequence
matching in uncompressed strings which basically scans the string for occur-
rences of the pattern. We speed up the scanning on compressed strings by intro-
ducing the first data structure for SLPs that supports labelled successor queries.
The answer to a labelled succesor query ls(i, c) on a string is the index of the
first character c occurring after position i in the string. An essential part of this
data structure is a new data structure for the tree color problem. This problem is
to preprocess a tree where each node is colored by zero or more colors, such that
given a node v and a color c, we may efficiently answer a first colored ancestor
query, i.e., compute the lowest ancestor of v with color c. Additionally, this data
structure also supports a new type of query we call the last colored ancestor.

Here the query is two nodes u and v and a color c, and the answer is the highest
node on the path from u to v with color c. These results may be of independent
interest.

2 Preliminaries

Bit Strings. We will use bit strings to represent sets. In a bit string B =
b1b2 . . . bu representing a set B of elements from a universe of size u, bi = 1

iff element i is in B. B = [0]u denotes the empty set. The operators ∧, ∨, and ⊕
denote the bitwise AND, OR, and exclusive OR (XOR) of two bit strings. The
negation of a bit string B is B. A summary Bs of k bit strings B1, B2, . . . , Bk of
equal length is Bs = B1 ∨B2 ∨ . . . ∨Bk. For a bit string of length w we assume
that the mask of any constant can be computed in O(1) time. Given a bit string
B of length w, the index of the least significant set bit can be found in O(1)
time from log2((B − 1)⊕B ∧ B). Finding the most significant set bit is more
elaborate, but can also be done O(1) time [18]. An n × m bit matrix may be
transposed in O(w logw) time if n ≤ w and m ≤ w [24].

Trees. In this paper all trees are rooted, ordered, and have labels on the nodes.
The number of nodes in a tree T is t. We denote by T (v) the subtree rooted in
v containing all descendants of v. The size |T (v)| is the number of nodes in the
subtree T (v) including v. If u is a node in the subtree T (v) we write u ∈ T (v).
If T is a binary tree we denote the left and right child of a node v by left(v) and
right(v).

A heavy path decomposition [23] decomposes T into disjoint paths. Nodes
are classified as either heavy or light and the decomposition is defined as follows.
The root is light. For each internal node v, its heavy child w is the node for which
T (w) is of maximum size among the subtrees rooted in children of v. The other
children of v are light. Edges are also classified as heavy and light. An edge
going into a heavy node is heavy and likewise for light nodes. The heavy path
decomposition ensures the property that 1

2 |T (v)| > |T (u)| for any light child u
of v. This means that there are O(log t) light edges on any path from the root to
a leaf. The heavy path decomposition can be computed in O(t) time and space.

Given a binary tree T rooted in a node r, t > 1, and a parameter 1 ≤ x ≤ t,
we may partition T into at most t/x clusters such that for a fixed constant c, the
size of any cluster is at most cx [3,5] (see also [1] for a full proof). Two clusters
overlap in at most one node, and a node is called a boundary node if it is part
of more than one cluster. Any cluster has at most two boundary nodes, and a
boundary node is either a leaf or the root in the subtree that is the cluster. The
tree obtained by repeatedly contracting edges between two nodes if one of them
is not a boundary node is called the macro tree. In other words, the macro tree
is the tree consisting only of boundary nodes. A cluster partition can be found
in O(t) time.

The answer to a level ancestor query la(v, d) on T is the ancestor of v with
depth d. A linear space data structure that answers an la query in O(1) time
can be computed for T in O(t) time [16] (see also [2, 7, 8]).

Straight Line Programs. A Straight Line Program S is a context-free grammar
in Chomsky normal form with n production rules that unambigously derives a
string S of length N . We represent the SLP as a rooted, ordered, and node-
labelled directed acyclic graph (DAG) with outdegree 2 and we will refer to
production rules as nodes in the DAG. A depth-first left-to-right traversal start-
ing from a node v in the DAG produces the string S(v) of length |S(v)|. The
tree that emerges from the traversal we call the derivation tree. We denote the
left and right children of v for left(v) and right(v), respectively. Furthermore,
the height of the SLP is the length of the longest path going from the root to a
terminal node and is denoted by h.

We may access a character S[i] in O(h) time by storing |S(v)| for each node v
in the SLP, and simulate a top-down search of the derivation tree. Doing so yields
a unique path from the root of S to the terminal node labelled S[i]. There is also
a linear space data structure that supports random access in SLPs in O(logN)
time [9]. A key technique used in this data structure is the extension of the heavy
path decomposition of trees to SLPs which we will also use in our data structure.
For each node v ∈ S, we select the child of v that derives the longest string to be
a heavy node. The other child is light. Heavy and light edges are defined as in
the decomposition of trees. Whereas applying this technique to a tree results in
a decomposition into disjoint paths, it will result in a decomposition into disjoint
trees when applied to an SLP. We denote this set of trees by the heavy forest H
of the SLP. This decomposition ensures that the number of light edges on any
path from the root to a terminal node is O(logN). Hence, on any path from
the root of the SLP to a terminal node, we visit at most logN trees from H.
When accessing a character using the data structure of [9] we may also report
the entry and exit nodes for each tree visited on the unique root-to-terminal
path that emerges from the query.

3 Packed Tree Color Problems

In a colored tree, each node is colored by zero or more colors from the set
{1, . . . , σ}. A packed colored tree is a colored tree where the colors of each node
v is given as a bit string C(v) where C(v)[c] = 1 iff v is colored c. In this section
we consider the packed tree color problem which is to preprocess a packed colored
tree T to support first and last colored ancestor queries. The answer to a first
colored ancestor query firstcolor(v, c) is the lowest ancestor of v with color
c, and the answer to a last colored ancestor query lastcolor(u, v, c) is the
highest node with color c on the path from u to v, where we always assume that
u is an ancestor of v. Throughout this section we will use the following notation
to distinguish results. If a data structure requires p(t) time to build, uses s(t)
space, and supports firstcolor and lastcolor queries in q(t) time, then the
the triple 〈p(t), s(t), q(t)〉 refers to the solution.

Solutions to the tree color problem for trees that are not packed may be ap-
plied to packed trees. All known solutions focus entirely on supporting firstcolor
queries [4, 16, 17, 21]. A simple solution that supports firstcolor queries in

O(1) time is to store the answer for every color in every node. This yields a
〈O(tσ), O(tσ), O(1)〉 solution. The currently best known trade-off for the tree
color problem is 〈O(t+D), O(t+D), O(logw)〉 [21], whereD =

∑
v∈T

∑σ
i=1 C(v)[i]

is the accumulated number of colors used.
Our motivation for revisiting this problem is twofold. First we have that

D = O(tσ) in our application and we are striving for a space bound that is in
o(tσ). Second we want to support lastcolor queries.

Due to lack of space, the analyses of the first two data structures are omitted.

3.1 A 〈O(tσ), O(tσ), O(1)〉 Solution

We store the result of a firstcolor(v, c) query for every node and color. For
each color, let the induced c-colored subtree be the tree obtained by deleting all
nodes that are not colored by color c except the root. Build a levelled ancestor
data structure for each induced colored subtree.

The result of a firstcolor query is precomputed. A lastcolor(u, v, c)
query is answered as follows. If firstcolor(v, c) = firstcolor(u, c) then there
is not a node with color c on the path from u to v. If firstcolor(v, c) 6=
firstcolor(u, c) then let u′ and v′ be the nodes corresponding to u and v in
the induced c-colored subtree. The answer to lastcolor(u, v, c) is then the
answer to la(v′, depth(u′)− 1) in the induced c-colored subtree.

Lemma 1. The packed tree color problem can be solved using O(tσ) preprocess-
ing time and space, and O(1) query time.

3.2 A 〈O(t+ tσ
w
), O(t+ tσ

w
), O(log t)〉 Solution

We fix a heavy path decomposition of T . For each path p in the heavy path
decomposition of T we build a balanced binary tree Tp having the nodes of p
as leaves. For each node v in Tp we store a summary B(v) of the colors of its
children. For each heavy path p = v1, v2, . . . , vk, where v1 is the highest node
on the path, we store a summary P (vi) of colors on the path prefix v1 . . . vi for
every vi on p.

For answering a firstcolor(v, c) query, let p = v1, v2, . . . , vk be the heavy
path containing v and let vi = v for some 1 ≤ i ≤ k. If P (vi)[c] = 1 we find the
lowest ancestor va of vi in Tp for which B(left(va))[c] = 1 and vi /∈ Tp(left(va)).
The answer to the query is then the rightmost leaf in Tp(left(va)) with color c.
If P (vi)[c] = 0 we repeat the procedure with vi = parent(v1), i.e., we jump to
the previous heavy path, until we find the first colored ancestor or we reach the
root of T .

A lastcolor(u, v, c) query is handled in a similar way. We first find the
highest light node w on the path from u to v for which P (parent(w))[c] = 1.
Let p be the heavy path containing parent(w). Now there are three cases. If u
is not on p, the answer to the query is the leftmost leaf in Tp that has color c. If
p contains u, the answer is the leftmost leaf with color c to the right of u in Tp,
if such a node exists. If it does not exist, we repeat the first step for the second
highest light node w′ between u and v for which P (parent(w′))[c] = 1.

Lemma 2. The packed tree color problem can be solved using O(t+ tσ
w) prepro-

cessing time and space, and O(log t) query time.

3.3 A 〈O(t+ tσ logw
w

), O(t+ tσ
w
), O(t

w
)〉 Solution

Let v1, . . . , vt be the nodes of T in pre-order. We will represent T as a σ × t bit
matrix M . Let c be a color from the set of colors {1, . . . , σ}. In row c of M we
store a bit string where bit i is 1 iff vi has color c. For each node vi we also store
a bit string A(i) where bit j is 1 iff vj is an ancestor of vi.

We construct this data structure from a packed colored tree as follows. As-
sume that the bit strings representing the node colorings form a t × σ matrix
where row i is the colorings of node vi. We transpose this matrix to get M . To do
this we partition the matrix into a t

w ×
σ
w matrix (assume w.l.o.g. that w divides

t and σ), transpose each w × w submatrix as described in [24], and transpose
the t

w ×
σ
w matrix to get M .

To compute the ancestor bit strings first set A(root(T)) = [0]t. For all other
nodes vi, where vj is the parent of vi, set A(vi) = A(vj) ∨ 2j .

We answer a firstcolor(v, c) as follows. Let R = M [c] ∧ A(v). Now R is
a bit string representing the set of ancestors of v with color c. Since the nodes
have pre-order indices, the answer to the query is vi, where i is the index of the
least significant set bit in R.

To answer a lastcolor(v, u, c) query we start by computing R the same
way as above. We then set the first i− 1 bits of R to 0, where i is the index of
u. The answer to the query is the most significant set bit of R.

The σ × t bit matrix M can be packed in words and therefore uses O(tσw)
space. The same is evident for the ancestor bit strings. Transposing a w × w
matrix takes O(w logw) time, and since there are tσ

w2 submatrices of this size

in the color bit matrix, the total time spent for all submatrices is O(tσ logw
w).

Transposing the t
w ×

σ
w matrix takes O(tσw) time. Computing the ancestor bit

strings clearly takes O(tσw) time.
The size of R is O(tw), so finding the first non-zero word takes O(tw) time.

Determining the least or most significant set bit of a word is done in O(1) time.
Thus, the query time for both a firstcolor and a lastcolor query is O(tw).

Lemma 3. The packed tree color problem can be solved using O(t + tσ logw
w)

preprocessing time, O(t+ tσ
w) space, and O(tw) query time.

3.4 Combining the Solutions

We now show how to combine the previously described solutions to get 〈O(t +
nσ
w), O(t+ nσ

w), O(logw)〉 and 〈O(t+ tσ logw
w), O(t+ tσ

w), O(1)〉 trade-offs. This is
achieved by doing a cluster partioning of the tree.

First we convert T to a binary tree T ′. Then we partition T ′ into O(tw) clus-
ters, i.e., each cluster has size O(w). For each cluster C, where one boundary
node is a leaf in the cluster and the other is the root of the cluster, we make a

summary of the colors of the nodes on the path from the root to the leaf. The
summary is stored in the macro tree node that corresponds to the leaf boundary
node of C. Apply the 〈O(tσ), O(tσ), O(1)〉 solution to the macro tree, and ap-
ply either the 〈O(tσw), O(tσw), O(log t)〉 solution or the 〈O(tσ logw

w), O(tσw), O(tw)〉
solution to each cluster using the original colors.

Here is how we answer a firstcolor(v, c) query. Let Cv be the cluster
containing v. First we ask for firstcolor(v, c) in Cv. If the answer is a node
in Cv, we are done. If it is undefined, we find the node r in the macro tree
corresponding to the root of Cv. We check if r has color c in the macro tree and
otherwise ask for w = firstcolor(r, c) in the macro tree. In the cluster Cw
having w as a leaf boundary node we then check if w has color c and otherwise
ask for firstcolor(w, c) in Cw.

We answer a lastcolor(u, v, c) query as follows. Assume that u 6= v and
let Cu and Cv be the clusters containing u and v. If Cu = Cv then the answer
is lastcolor(u, v, c) in the cluster containing u and v. If Cu 6= Cv, let w be
the leaf boundary node of Cu where v ∈ T (w). We now proceed in three steps.
First, we ask for lastcolor(u,w, c) in Cu. If the query returns a node, this is
also the answer to the lastcolor(u, v, c) query. If the answer in the first step is
undefined we ask for z = lastcolor(w, root(Cv), c) in the macro tree to locate
the highest cluster with a node with color c between u and v. The answer to the
query is then lastcolor(root(Cz), z, c) on Cz. If the first two steps fail, the
answer to a query is lastcolor(root(Cv), v, c).

The cluster partition can be computed in linear time, and the cluster path
summaries are computed in O(tσw) time. Since the macro tree has O(tw) nodes the
preprocessing time and space to apply the 〈O(tσ), O(tσ), O(1)〉 solution becomes
O(tσw). To answer a query we perform a constant number of firstcolor and
lastcolor queries on the macro tree and clusters. Therefore the total time to
perform queries on the macro tree is O(1) time. To get (i) we apply the 〈O(t+
tσ
w), O(t + tσ

w), O(log t)〉 solution to clusters. Since a cluster has size O(w) we
use a total of O(logw) time performing queries on clusters. To get (ii) we apply
the 〈O(tσ logw

w), O(tσw), O(tw)〉 solution to clusters. Again, since clusters have size
O(w) we use a total of O(1) time performing queries on clusters. Preprocessing
time and space for the cluster data structures follow because

∑
C∈CS |C| = O(t).

Theorem 2. The packed tree color problem can be solved using O(t+ tσ
w) space,

(i) O(t+ tσ
w) preprocessing time, and O(logw) query time, or

(ii) O(t+ tσ
w logw) preprocessing time, and O(1) query time.

4 Labelled Successor Data Structure for SLPs

The answer to a labelled successor ls(i, c) query on a string S is the index of
the first occurrence of the character c after position i in S. More formally, the
answer to ls(i, c) is an index j such that S[j] = c, j > i, and S[k] 6= c for
k = i+ 1, . . . , j − 1.

In this section we present a data structure that supports ls(i, c) queries on an
SLP. This is the first data structure dedicated to solving this problem on SLPs.
Alternatively, we may build the random access data structure of [9] and then
answer an ls(i, c) query by doing a random access query for position i followed
by a linear scan to find the first occurrence of c. This yields a query time of
O(logN + j − i) while using O(n) space for the data structure.

Theorem 3. There is a data structure supporting labelled successor (and pre-
decessor) queries on a string of size N over an alphabet of size σ compressed
by an SLP of size n in the word RAM model with word size w ≥ logN using
O(n+ nσ

w) space and

(i) O(n+ nσ
w) preprocessing time, and O(logN logw) query time, or

(ii) O(n+ nσ
w logw) preprocessing time, and O(logN) query time.

We first apply the construction of [9], and let H be the heavy forest obtained
from the heavy path decomposition of S. For each node v in S with children
left(v) and right(v) we store two bit strings L(v) and R(v) summarizing the
characters in S(left(v)) and S(right(v)). If v and left(v) are in the same tree in
H then L(v) = [0]σ and similarly for right(v) and R(v). For each tree in H we
build two data structures for the packed tree color problem. One where the L
bit strings serve as colors and one where the R bit strings serve as colors.

We answer an ls(i, c) query as follows. First we access the character S[i]
using the random access data structure. We now have the entry and exit points
of the heavy trees in H on the unique path p describing S[i]. Let T1, . . . , Tk ∈ H
be a sequence of trees on p in the order they are visited when starting from
the root and ending in the terminal generating S[i], and let (v1, u1), . . . , (vk, uk)
be the entry and exit nodes for each tree in the sequence. Using the packed
tree color data structure for the R colors, we repeat lastcolor(ui, vi, c) for
i = k down to some j until lastcolor(uj , vj , c) is not undefined. Let w =
right(lastcolor(uj , vj , c)). We now search for the first occurrence of c in S(w).
Let Ti be the tree in H that contains the node w, then the search proceeds in
three steps. First, we ask for v = firstcolor(w, c) in Ti in the data structure
for L colors and restart the search from left(v). If the query firstcolor(w, c) is
undefined we continue to the next step. In the second step we check if root(Ti)
generates c. If it does, we now have a unique set of entry and exit nodes in
the trees of H that constitutes a path to a terminal that generates the first c
after position i. The answer to the ls(i, c) query is the index of this c which
we retrieve using the random access data structure. Finally, if root(Ti) does not
generate c we ask for v = lastcolor(w, root(Ti), c) in Ti in the data structure
for R colors, and restart the search from right(v).

The data structure uses O(n + nσ
w) space because the random access data

structure uses linear space and the bit strings L and R use O(nσw) space. The
random access data structure, including the heavy path decomposition, takes
O(n) time to compute and the L and R values are computed using O(nσw) OR
operations in a bottom up fashion. Therefore, this part of the data structure is
computed in O(n+ nσ

w) time.

To get Theorem 3 (i) we use the packed tree color data structure of Theorem
2 (i) for the trees in H and likewise for (ii). Since the trees are disjoint, the
preprocessing time and space becomes as in the Theorem 3.

For the query, we first do one random access query that takes O(logN)
time, then we perform at most logN lastcolor queries walking up the SLP
and at most 2 logN firstcolor and lastcolor queries locating the labelled
successor. Finally, retrieving the index also takesO(logN) time using the random
access data structure.

5 Subsequence Matching

We will now use the labelled successor data structure to obtain a subsequence
matching algorithm for SLPs. Our algorithm is based on the folklore algorithm
for subsequence matching which works as follows (see also [15,20]). First we find
the minimal prefix S[1..j] that contains P as a subsequence. This is done by
reading S left to right while searching for the characters of P one at a time.
We then find the minimal suffix S[i..j] of the prefix S[1..j] that contains P .
Similarly, this is done by scanning the prefix right to left. Now S[i..j] is the first
minimal occurrence of P . To find the next minimal occurrence we repeat this
process for the suffix S[i + 1..N]. It can be shown that this algorithm finds all
minimal occurrences of P in O(Nm) time.

By using our labelled successor data structure described in the previous sec-
tion we speed up the procedure of finding some specific character of P . Assume
we have matched P [1..k] to S[1..j] such that P [k] = S[j]. Instead of doing a
linear scan of S[j + 1..N] to find P [k + 1] we ask for the next occurrence of
P [k + 1] using ls(j, P [k + 1]).

For each occurrence of P we perform O(m) labelled successor (and labelled
predecessor) queries, and we also have to construct the data structures to support
these. By applying the results of Theorem 3 we get Theorem 1.

References

1. S. Abiteboul, S. Alstrup, H. Kaplan, T. Milo, and T. Rauhe. Compact labeling
scheme for ancestor queries. SIAM J. Comput, 35(6):1295–1309, 2006.

2. S. Alstrup and J. Holm. Improved algorithms for finding level ancestors in dynamic
trees. In Proc. 27th ICALP, pages 73–84, 2000.

3. S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Minimizing diameters of
dynamic trees. In Proc. 24th ICALP, pages 270–280, 1997.

4. S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems. In Proc. 39th
FOCS, pages 534–543, 1998.

5. S. Alstrup, J. P. Secher, and M. Spork. Optimal on-line decremental connectivity
in trees. Inform. Process. Lett., 64(4):161–164, 1997.

6. R. A. Baeza-Yates. Searching subsequences. Theoret. Comput. Sci., 78(2):363–376,
1991.

7. M. A. Bender and M. Farach-Colton. The level ancestor problem simplified. The-
oret. Comput. Sci., 321(1):5–12, 2004.

8. O. Berkman and U. Vishkin. Finding level-ancestors in trees. J. Comput. System
Sci., 48(2):214–230, 1994.

9. P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and O. Weimann.
Random access to grammar-compressed strings. In Proc. 22nd SODA, pages 373–
389, 2011.

10. L. Boasson, P. Cegielski, I. Guessarian, and Y. Matiyasevich. Window-accumulated
subsequence matching problem is linear. In Proc. 18th PODS, pages 327–336, 1999.

11. P. Cégielski, I. Guessarian, Y. Lifshits, and Y. Matiyasevich. Window subsequence
problems for compressed texts. In Proc. 1st CSR, pages 127–136, 2006.

12. P. Cégielski, I. Guessarian, and Y. Matiyasevich. Multiple serial episodes matching.
Inform. Process. Lett., 98(6):211–218, 2006.

13. M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and
A. Shelat. The smallest grammar problem. IEEE Trans. Inf. Theory, 51(7):2554–
2576, 2005.

14. M. Crochemore, B. Melichar, and Z. Trońıček. Directed acyclic subsequence graph-
overview. J. Discrete Algorithms, 1(3):255–280, 2003.

15. G. Das, R. Fleischer, L. Gasieniec, D. Gunopulos, and J. Kärkkäinen. Episode
matching. In Proc. 8th CPM, pages 12–27, 1997.

16. P. F. Dietz. Finding level-ancestors in dynamic trees. In Proc. 2nd WADS, pages
32–40, 1991.

17. P. Ferragina and S. Muthukrishnan. Efficient dynamic method-lookup for object
oriented languages. In Proc. 4th ESA, pages 107–120, 1996.

18. M. L. Fredman and D. E. Willard. Surpassing the information theoretic bound
with fusion trees. J. Comput. System Sci., 47(3):424–436, 1993.

19. N. J. Larsson and A. Moffat. Off-line dictionary-based compression. Proc. IEEE,
88(11):1722–1732, 2000.

20. H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in
event sequences. Data Min. Knowl. Discov., 1(3):259–289, 1997.

21. S. Muthukrishnan and M. Müller. Time and space efficient method-lookup for
object-oriented programs. In Proc. 7th SODA, pages 42–51, 1996.

22. W. Rytter. Application of Lempel–Ziv factorization to the approximation of
grammar-based compression. Theoret. Comput. Sci., 302(1):211–222, 2003.

23. D. D. Sleator and R. Endre Tarjan. A data structure for dynamic trees. J. Comput.
System Sci., 26(3):362–391, 1983.

24. M. Thorup. Randomized sorting in O(n log logn) time and linear space using
addition, shift, and bit-wise boolean operations. J. Algorithms, 42(2):205–230,
2002.

25. A. Tiskin. Faster subsequence recognition in compressed strings. J. Math. Sci.,
158(5):759–769, 2009.

26. A. Tiskin. Towards approximate matching in compressed strings: Local subse-
quence recognition. In Proc. 6th CSR, pages 401–414, 2011.

27. Z. Trońıček. Episode matching. In Proc. 12th CPM, pages 143–146, 2001.
28. T. Yamamoto, H. Bannai, S. Inenaga, and M. Takeda. Faster subsequence and

dont-care pattern matching on compressed texts. In Proc. 22nd CPM, pages 309–
322, 2011.

29. J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Trans. Inf. Theory, 23(3):337–343, 1977.

30. J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theory, 24(5):530–536, 1978.

	Compressed Subsequence Matching and Packed Tree Coloring

