537 research outputs found

    PMH68 CHANGES OVER TIME IN PATIENT CHARACTERISTICS FOLLOWINGTHE INTRODUCTION OF DULOXETINE: A 24 MONTHS STUDY

    Get PDF

    Microstructure evolution in AZ61 alloy processed by Equal Channel Angular Pressing

    Get PDF
    Abstract: Magnesium and its alloys have play an strategic role in many applications like aerospace, automobile, nuclear, electrical and structural engineering due to its strength to weight ratio is very low when compared to aluminum, Titanium and steel. In the present work, AZ61 wrought magnesium alloy was processed by using Equal Channel Angular Pressing (ECAP) at three different temperatures of 483 K, 523 K and 573 K using up to four ECAP passes. A microstructural study was conducted by measuring the average grain size after each pass, for the three different processing temperatures. The mechanical properties of the processed samples were noted to improve due to the reduction in the grain size after each ECAP pass. After four ECAP passes, the average grain size of the AZ61 samples was found to be reduced to 85%, 81%, and 70% for the pressing temperatures of 483 K, 523 K and 573 K respectively. The tensile strength of the AZ61 alloy increased with increase in number of ECAP passes for each of the temperatures when compared to as-received alloy. For instances, for the processing temperature of 483 K, 523 K and 573 K, the tensile strength increased to 24%, 10%, and 12% respectively at four ECAP pass. Also, the percentage elongation of the alloy was increased with increase in processing temperatures. Moreover, fracture topographies of the tensile surfaces are illustrated through scanning electron microcopy and reveal ductile fracture than as received alloy for four passes at each ECAP processing temperature

    PMH67 CLINICAL CHARACTERISTICS AMONG ANTIDEPRESSANT INITIATORS

    Get PDF

    Larval and settlement periods of the northern searobin (Prionotus carolinus) and the striped searobin (P. evolans)

    Get PDF
    This study reports new information about searobin (Prionotus spp.) early life history from samples collected with a Tucker trawl (for planktonic stages) and a beam trawl (for newly settled fish) from the coastal waters of New Jersey. Northern searobin, Prionotus carolinus, were much more numerous than striped searobin, P. evolans, often by an order of magnitude. Larval Prionotus were collected during the period July–October and their densities peaked during September. For both species, notochord flexion was complete at 6–7 mm standard length (SL) and individuals settled at 8–9 mm SL. Flexion occurred as early as 13 days after hatching and settlement occurred as late as 25 days after hatching, according to ages estimated from sagittal microincrements. Both species settled directly in continental shelf habitats without evidence of delayed metamorphosis. Spawning, larval dispersal, or settlement may have occurred within certain estuaries, particularly for P. evolans; thus collections from shelf areas alone do not permit estimates of total larval production or settlement rates. Reproductive seasonality of P. carolinus and P. evolans may vary with respect to latitude and coastal depth. In this study, hatching dates and sizes of age-0 P. carolinus varied with respect to depth or distance from the New Jersey shore. Older and larger age-0 individuals were found in deeper waters. These variations in searobin age and size appear to be the combined result of intraspecific variations in searobin reproductive seasonality and the limited capability of searobin eggs and larvae to disperse

    TaMSH7: A cereal mismatch repair gene that affects fertility in transgenic barley (Hordeum vulgare L.)

    Get PDF
    Background: Chromosome pairing, recombination and DNA repair are essential processes during meiosis in sexually reproducing organisms. Investigating the bread wheat (Triticum aestivum L.) Ph2 (Pairing homoeologous) locus has identified numerous candidate genes that may have a role in controlling such processes, including TaMSH7, a plant specific member of the DNA mismatch repair family. Results: Sequencing of the three MSH7 genes, located on the short arms of wheat chromosomes 3A, 3B and 3D, has revealed no significant sequence divergence at the amino acid level suggesting conservation of function across the homoeogroups. Functional analysis of MSH7 through the use of RNAi loss-of-function transgenics was undertaken in diploid barley (Hordeum vulgare L.). Quantitative real-time PCR revealed several T0 lines with reduced MSH7 expression. Positive segregants from two T1 lines studied in detail showed reduced MSH7 expression when compared to transformed controls and null segregants. Expression of MSH6, another member of the mismatch repair family which is most closely related to the MSH7 gene, was not significantly reduced in these lines. In both T1 lines, reduced seed set in positive segregants was observed. Conclusion: Results presented here indicate, for the first time, a distinct functional role for MSH7 in vivo and show that expression of this gene is necessary for wild-type levels of fertility. These observations suggest that MSH7 has an important function during meiosis and as such remains a candidate for Ph2.Andrew H Lloyd, Andrew S Milligan, Peter Langridge, and Jason A Abl

    Habitat use and movement of the mummichog (Fundulus heteroclitus) in a restored salt marsh.

    Get PDF
    ABSTRACT: The mummichog, Fundulus heteroclitus, is one of the most abundant macrofaunal components of salt marsh ecosystems along the east coast of the United States. During April-November 1998, we determined the habitat use and movement patterns of young-of-the-year (YOY) and adult mummichogs in a restored marsh, formerly a salt hay farm, and an adjacent creek in order to expand our understanding of the ecology of the species and evaluate the success of the restoration. Four major fish habitat types (large first-order natural creek, second-order created creek, linear drainage ditch, and marsh surface) were identified within the study site. Patterns of relative abundance and mark and recapture using coded wire tags were used to determine the habitat use, tidal movements, home range, and site fidelity of the species within these habitat types. A total of 14,784 fish, ranging from 20-100 mm SL, were captured with wire mesh traps and tagged, and 1,521 (10.3%) fish were recaptured. A variety of gears were used to attempt to recapture fish across all habitat types, including wire mesh traps, push nets, and otter trawls. Based on abundance and recaptures of tagged fish, the YOY and adults primarily used the shallow subtidal and intertidal areas of the created creek, the intertidal drainage ditches, and the marsh surface of the restored marsh but not the larger, first-order natural creek. At low tide, large numbers were found in the subtidal areas of the created creek; these then moved onto the marsh surface on the flooding tide. Elevation, and thus hydroperiod, appeared to influence the microscale use of the marsh surface. We estimated the home range of adults and large YOY (20-100 mm SL) to be 15 ha at high tide, which was much larger than previously quantified. There was strong site fidelity to the created creek at low tide. The habitat use and movement patterns of the mummichog appeared similar to that reported for natural marshes. Coupled with the results of other studies on the feeding, growth, and production of this species in this restored marsh, the species appeared to have responded well to the restoration

    111In-labelled polymeric nanoparticles incorporating a ruthenium-based radiosensitizer for EGFR-targeted combination therapy in oesophageal cancer cells

    Get PDF
    Radiolabelled, drug-loaded nanoparticles may combine the theranostic properties of radionuclides, the controlled release of chemotherapy and cancer cell targeting. Here, we report the preparation of poly(lactic-co-glycolic acid) (PLGA) nanoparticles surface conjugated to DTPA-hEGF (DTPA = diethylenetriaminepentaacetic acid, hEGF = human epidermal growth factor) and encapsulating the ruthenium-based DNA replication inhibitor and radiosensitizer Ru(phen)2(tpphz)2+ (phen = 1,10-phenanthroline, tpphz = tetrapyridophenazine) Ru1. The functionalized PLGA surface incorporates the metal ion chelator DTPA for radiolabelling and the targeting ligand for EGF receptor (EGFR). Nanoparticles radiolabelled with 111In are taken up preferentially by EGFR-overexpressing oesophageal cancer cells, where they exhibit radiotoxicity through the generation of cellular DNA damage. Moreover, nanoparticle co-delivery of Ru1 alongside 111In results in decreased cell survival compared to single-agent formulations; an effect that occurs through DNA damage enhancement and an additive relationship between 111In and Ru1. Substantially decreased uptake and radiotoxicity of nanoparticles towards normal human fibroblasts and oesophageal cancer cells with normal EGFR levels is observed. This work demonstrates nanoparticle co-delivery of a therapeutic radionuclide plus a ruthenium-based radiosensitizer can achieve combinational and targeted therapeutic effects in cancer cells that overexpress EGFR
    • …
    corecore