1,311 research outputs found

    U mobilization and associated U isotope fractionation by sulfur-oxidizing bacteria

    Get PDF
    Uranium (U) contamination of the environment causes high risk to health, demanding for effective and sustainable remediation. Bioremediation via microbial reduction of soluble U(VI) is generating high fractions (>50%) of insoluble non-crystalline U(IV) which, however, might be remobilized by sulfur-oxidizing bacteria. In this study, the efficacy of Acidithiobacillus (At.) ferrooxidans and Thiobacillus (T.) denitrificans to mobilize non-crystalline U(IV) and associated U isotope fractionation were investigated. At. ferrooxidans mobilized between 74 and 91% U after 1 week, and U mobilization was observed for both, living and inactive cells. Contrary to previous observations, no mobilization by T. denitrificans could be observed. Uranium mobilization by At. ferrooxidans did not cause U isotope fractionation suggesting that U isotope ratio determination is unsuitable as a direct proxy for bacterial U remobilization. The similar mobilization capability of active and inactive At. ferrooxidans cells suggests that the mobilization is based on the reaction with the cell biomass. This study raises doubts about the long-term sustainability of in-situ bioremediation measures at U-contaminated sites, especially with regard to non-crystalline U(IV) being the main component of U bioremediation

    Vacancy complexes with oversized impurities in Si and Ge

    Get PDF
    In this paper we examine the electronic and geometrical structure of impurity-vacancy complexes in Si and Ge. Already Watkins suggested that in Si the pairing of Sn with the vacancy produces a complex with the Sn-atom at the bond center and the vacancy split into two half vacancies on the neighboring sites. Within the framework of density-functional theory we use two complementary ab initio methods, the pseudopotential plane wave (PPW) method and the all-electron Kohn-Korringa-Rostoker (KKR) method, to investigate the structure of vacancy complexes with 11 different sp-impurities. For the case of Sn in Si, we confirm the split configuration and obtain good agreement with EPR data of Watkins. In general we find that all impurities of the 5sp and 6sp series in Si and Ge prefer the split-vacancy configuration, with an energy gain of 0.5 to 1 eV compared to the substitutional complex. On the other hand, impurities of the 3sp and 4sp series form a (slightly distorted) substitutional complex. Al impurities show an exception from this rule, forming a split complex in Si and a strongly distorted substitutional complex in Ge. We find a strong correlation of these data with the size of the isolated impurities, being defined via the lattice relaxations of the nearest neighbors.Comment: 8 pages, 4 bw figure

    Background Independence and Asymptotic Safety in Conformally Reduced Gravity

    Full text link
    We analyze the conceptual role of background independence in the application of the effective average action to quantum gravity. Insisting on a background independent renormalization group (RG) flow the coarse graining operation must be defined in terms of an unspecified variable metric since no rigid metric of a fixed background spacetime is available. This leads to an extra field dependence in the functional RG equation and a significantly different RG flow in comparison to the standard flow equation with a rigid metric in the mode cutoff. The background independent RG flow can possess a non-Gaussian fixed point, for instance, even though the corresponding standard one does not. We demonstrate the importance of this universal, essentially kinematical effect by computing the RG flow of Quantum Einstein Gravity in the ``conformally reduced'' Einstein--Hilbert approximation which discards all degrees of freedom contained in the metric except the conformal one. Without the extra field dependence the resulting RG flow is that of a simple ϕ4\phi^4-theory. Including it one obtains a flow with exactly the same qualitative properties as in the full Einstein--Hilbert truncation. In particular it possesses the non-Gaussian fixed point which is necessary for asymptotic safety.Comment: 4 figures

    Cardiotoxicity of mitoxantrone treatment in a german cohort of 639 multiple sclerosis patients

    Get PDF
    Background and Purpose: The aim of this study was to elucidate the role of therapy-related cardiotoxicity in multiple sclerosis (MS) patients treated with mitoxantrone and to identify potential predictors for individual risk assessment. Methods: Within a multicenter retrospective cohort design, cardiac side effects attributed to mitoxantrone were analyzed in 639 MS patients at 2 MS centers in Germany. Demographic, disease, treatment, and follow-up data were collected from hospital records. Patients regularly received cardiac monitoring during the treatment phase. Results: None of the patients developed symptomatic congestive heart failure. However, the frequency of patients experiencing cardiac dysfunction of milder forms after mitoxantrone therapy was 4.1% (26 patients) among all patients. Analyses of the risk for cardiotoxicity revealed that cumulative dose exposure was the only statistically relevant risk factor associated with cardiac dysfunction. Conclusions: The number of patients developing subclinical cardiac dysfunction below the maximum recommended cumulative dose is higher than was initially assumed. Interestingly, a subgroup of patients was identified who experienced cardiac dysfunction shortly after initiation of mitoxantrone and who received a low cumulative dose. Therefore, each administration of mitoxantrone should include monitoring of cardiac function to enhance the treatment safety for patients and to allow for early detection of any side effects, especially in potential high-risk subgroups (as determined genetically)

    Contribution of the nuclear field shift to kinetic uranium isotope fractionation

    Get PDF
    Isotopic fractionation of heavy elements (e.g., >100 amu) often invokes the nuclear field shift effect, which is due to the impact of the elements’ large nuclei on electron density. In particular, it has been explicitly described for uranium (U) at equilibrium and during kinetic isotope fractionation in abiotic mercury reactions. By following the fractionation of 233U, 235U, 236U and 238U during the enzymatic reduction of hexavalent U to tetravalent U by the bacterium Shewanella oneidensis, we provide the first direct evidence of the nuclear field shift effect during biologically controlled kinetic isotope fractionation. Here, we observed the odd-even staggering trend between fractionation factors of each isotope and their nuclear masses, and show that fractionation factors are correlated better with the nuclear volume than the mass. Additionally, by computing the relative contributions of the conventional mass-dependent effect (vibrational energy) and the mass-independent effect (nuclear field shift), we demonstrate that the experimental nuclear field shift effect is smaller than the calculated equilibrium value and that this discrepancy is responsible for the kinetic fractionation factor being lower than that predicted at equilibrium

    Persistence of the Isotopic Signature of Pentavalent Uranium in Magnetite

    Get PDF
    Uranium isotopic signatures can be harnessed to monitor the reductive remediation of subsurface contamination or to reconstruct paleo-redox environments. However, the mechanistic underpinnings of the isotope fractionation associated with U reduction remain poorly understood. Here, we present a coprecipitation study, in which hexavalent U (U(VI)) was reduced during the synthesis of magnetite and pentavalent U (U(V)) was the dominant species. The measured δ238^{238}U values for unreduced U(VI) (∼−1.0‰), incorporated U (96 ± 2% U(V), ∼−0.1‰), and extracted surface U (mostly U(IV), ∼0.3‰) suggested the preferential accumulation of the heavy isotope in reduced species. Upon exposure of the U-magnetite coprecipitate to air, U(V) was partially reoxidized to U(VI) with no significant change in the δ238^{238}U value. In contrast, anoxic amendment of a heavy isotope-doped U(VI) solution resulted in an increase in the δ238^{238}U of the incorporated U species over time, suggesting an exchange between incorporated and surface/aqueous U. Overall, the results support the presence of persistent U(V) with a light isotope signature and suggest that the mineral dynamics of iron oxides may allow overprinting of the isotopic signature of incorporated U species. This work furthers the understanding of the isotope fractionation of U associated with iron oxides in both modern and paleo-environments

    On the Possibility of Quantum Gravity Effects at Astrophysical Scales

    Get PDF
    The nonperturbative renormalization group flow of Quantum Einstein Gravity (QEG) is reviewed. It is argued that at large distances there could be strong renormalization effects, including a scale dependence of Newton's constant, which mimic the presence of dark matter at galactic and cosmological scales.Comment: LaTeX, 18 pages, 4 figures. Invited contribution to the Int. J. Mod. Phys. D special issue on dark matter and dark energ

    Primary Defects in β-Cell Function Further Exacerbated by Worsening of Insulin Resistance Mark the Development of Impaired Glucose Tolerance in Obese Adolescents

    Get PDF
    OBJECTIVE—Impaired glucose tolerance (IGT) is a pre-diabetic state of increasing prevalence among obese adolescents. The purpose of this study was to determine the natural history of progression from normal glucose tolerance (NGT) to IGT in obese adolescents

    Two-body Pion Absorption on 3He^3He at Threshold

    Full text link
    It is shown that a satisfactory explanation of the ratio of the rates of the reactions 3He(π,nn)^3He(\pi^-,nn) and 3He(π,np)^3He(\pi^-,np) for stopped pions is obtained once the effect of the short range two-nucleon components of the axial charge operator for the nuclear system is taken into account. By employing realistic models for the nucleon-nucleon interaction in the construction of these components of the axial charge operator, the predicted ratios agree with the empirical value to within 10-20\%.Comment: 19, UHPHYDOR-94-
    corecore