130 research outputs found
A novel methodology for in vivo endoscopic phenotyping of colorectal cancer based on real-time analysis of the mucosal lipidome: a prospective observational study of the iKnife
Background: This pilot study assessed the diagnostic accuracy of rapid evaporative ionization mass spectrometry (REIMS) in colorectal cancer (CRC) and colonic adenomas. Methods: Patients undergoing elective surgical resection for CRC were recruited at St. Mary’s Hospital London and The Royal Marsden Hospital, UK. Ex vivo analysis was performed using a standard electrosurgery handpiece with aspiration of the electrosurgical aerosol to a Xevo G2-S iKnife QTof mass spectrometer (Waters Corporation). Histological examination was performed for validation purposes. Multivariate analysis was performed using principal component analysis and linear discriminant analysis in Matlab 2015a (Mathworks, Natick, MA). A modified REIMS endoscopic snare was developed (Medwork) and used prospectively in five patients to assess its feasibility during hot snare polypectomy. Results: Twenty-eight patients were recruited (12 males, median age 71, range 35–89). REIMS was able to reliably distinguish between cancer and normal adjacent mucosa (NAM) (AUC 0.96) and between NAM and adenoma (AUC 0.99). It had an overall accuracy of 94.4 % for the detection of cancer versus adenoma and an adenoma sensitivity of 78.6 % and specificity of 97.3 % (AUC 0.99) versus cancer. Long-chain phosphatidylserines (e.g., PS 22:0) and bacterial phosphatidylglycerols were over-expressed on cancer samples, while NAM was defined by raised plasmalogens and triacylglycerols expression and adenomas demonstrated an over-expression of ceramides. REIMS was able to classify samples according to tumor differentiation, tumor budding, lymphovascular invasion, extramural vascular invasion and lymph node micrometastases (AUC’s 0.88, 0.87, 0.83, 0.81 and 0.81, respectively). During endoscopic deployment, colonoscopic REIMS was able to detect target lipid species such as ceramides during hot snare polypectomy. Conclusion: REIMS demonstrates high diagnostic accuracy for tumor type and for established histological features of poor prognostic outcome in CRC based on a multivariate analysis of the mucosal lipidome. REIMS could augment endoscopic and imaging technologies for precision phenotyping of colorectal cancer
Exploring the active site of the Streptococcus pneumoniae topoisomerase IV-DNA cleavage complex with novel 7,8-bridged fluoroquinolones.
As part of a programme of synthesizing and investigating the biological properties of new fluoroquinolone antibacterials and their targeting of topoisomerase IV from Streptococcus pneumoniae, we have solved the X-ray structure of the complexes of two new 7,8-bridged fluoroquinolones (with restricted C7 group rotation favouring tight binding) in complex with the topoisomerase IV from S. pneumoniae and an 18-base-pair DNA binding site-the E-site-found by our DNA mapping studies to bind drug strongly in the presence of topoisomerase IV (Leo et al. 2005 J. Biol. Chem. 280, 14 252-14 263, doi:10.1074/jbc.M500156200). Although the degree of antibiotic resistance towards fluoroquinolones is much lower than that of β-lactams and a range of ribosome-bound antibiotics, there is a pressing need to increase the diversity of members of this successful clinically used class of drugs. The quinolone moiety of the new 7,8-bridged agents ACHN-245 and ACHN-454 binds similarly to that of clinafloxocin, levofloxacin, moxifloxacin and trovofloxacin but the cyclic scaffold offers the possibility of chemical modification to produce interactions with other topoisomerase residues at the active site
Comparative performance of selected variability detection techniques in photometric time series
Photometric measurements are prone to systematic errors presenting a
challenge to low-amplitude variability detection. In search for a
general-purpose variability detection technique able to recover a broad range
of variability types including currently unknown ones, we test 18 statistical
characteristics quantifying scatter and/or correlation between brightness
measurements. We compare their performance in identifying variable objects in
seven time series data sets obtained with telescopes ranging in size from a
telephoto lens to 1m-class and probing variability on time-scales from minutes
to decades. The test data sets together include lightcurves of 127539 objects,
among them 1251 variable stars of various types and represent a range of
observing conditions often found in ground-based variability surveys. The real
data are complemented by simulations. We propose a combination of two indices
that together recover a broad range of variability types from photometric data
characterized by a wide variety of sampling patterns, photometric accuracies,
and percentages of outlier measurements. The first index is the interquartile
range (IQR) of magnitude measurements, sensitive to variability irrespective of
a time-scale and resistant to outliers. It can be complemented by the ratio of
the lightcurve variance to the mean square successive difference, 1/h, which is
efficient in detecting variability on time-scales longer than the typical time
interval between observations. Variable objects have larger 1/h and/or IQR
values than non-variable objects of similar brightness. Another approach to
variability detection is to combine many variability indices using principal
component analysis. We present 124 previously unknown variable stars found in
the test data.Comment: 29 pages, 8 figures, 7 tables; accepted to MNRAS; for additional
plots, see http://scan.sai.msu.ru/~kirx/var_idx_paper
Epithelial ovarian carcinoma diagnosis by desorption electrospray ionization mass spectrometry imaging
Ovarian cancer is highly prevalent among European women, and is the leading cause of gynaecological cancer death. Current histopathological diagnoses of tumour severity are based on interpretation of, for example, immunohistochemical staining. Desorption electrospray mass spectrometry imaging (DESI-MSI) generates spatially resolved metabolic profiles of tissues and supports an objective investigation of tumour biology. In this study, various ovarian tissue types were analysed by DESI-MSI and co-registered with their corresponding haematoxylin and eosin (H&E) stained images. The mass spectral data reveal tissue type-dependent lipid profiles which are consistent across the n = 110 samples (n = 107 patients) used in this study. Multivariate statistical methods were used to classify samples and identify molecular features discriminating between tissue types. Three main groups of samples (epithelial ovarian carcinoma, borderline ovarian tumours, normal ovarian stroma) were compared as were the carcinoma histotypes (serous, endometrioid, clear cell). Classification rates >84% were achieved for all analyses, and variables differing statistically between groups were determined and putatively identified. The changes noted in various lipid types help to provide a context in terms of tumour biochemistry. The classification of unseen samples demonstrates the capability of DESI-MSI to characterise ovarian samples and to overcome existing limitations in classical histopathology
NMR investigations of the interaction between the azo-dye sunset yellow and Fluorophenol
The interaction of small molecules with larger noncovalent assemblies is important across a wide range of disciplines. Here, we apply two complementary NMR spectroscopic methods to investigate the interaction of various fluorophenol isomers with sunset yellow. This latter molecule is known to form noncovalent aggregates in isotropic solution, and form liquid crystals at high concentrations. We utilize the unique fluorine-19 nucleus of the fluorophenol as a reporter of the interactions via changes in both the observed chemical shift and diffusion coefficients. The data are interpreted in terms of the indefinite self-association model and simple modifications for the incorporation of a second species into an assembly. A change in association mode is tentatively assigned whereby the fluorophenol binds end-on with the sunset yellow aggregates at low concentration and inserts into the stacks at higher concentrations
RESEARCH OF THE ABSORPTION AND EMISSION SPECTRA OF VARIOUS SUBSTANCES
In modern science and technology, to determine the chemical composition of substances, use a variety of different methods. Among these methods, one of the important places is spectral analysis. In order to obtain and investigate the emission spectrum of the substance, a device was developed that was controlled from a PC. The device is mobile and can be used with a portable laptop in arctic expeditions
Recommended from our members
Combined transcriptomic-(1)H NMR metabonomic study reveals yhat monoethylhexyl phthalate stimulates adipogenesis and glyceroneogenesis in human adipocytes
Adipose tissue is a major storage site for lipophilic environmental contaminants. The environmental metabolic disruptor hypothesis postulates that some pollutants can promote obesity or metabolic disorders by activating nuclear receptors involved in the control of energetic homeostasis. In this context, monoethylhexyl phthalate (MEHP) is of particular concern since it was shown to activate the peroxisome proliferator-activated receptor γ (PPARγ) in 3T3-L1 murine preadipocytes. In the present work, we used an untargeted, combined transcriptomic-(1)H NMR-based metabonomic approach to describe the overall effect of MEHP on primary cultures of human subcutaneous adipocytes differentiated in vitro. MEHP stimulated rapidly and selectively the expression of genes involved in glyceroneogenesis, enhanced the expression of the cytosolic phosphoenolpyruvate carboxykinase, and reduced fatty acid release. These results demonstrate that MEHP increased glyceroneogenesis and fatty acid reesterification in human adipocytes. A longer treatment with MEHP induced the expression of genes involved in triglycerides uptake, synthesis, and storage; decreased intracellular lactate, glutamine, and other amino acids; increased aspartate and NAD, and resulted in a global increase in triglycerides. Altogether, these results indicate that MEHP promoted the differentiation of human preadipocytes to adipocytes. These mechanisms might contribute to the suspected obesogenic effect of MEHP
An AI-powered patient triage platform for future viral outbreaks using COVID-19 as a disease model
Over the last century, outbreaks and pandemics have occurred with disturbing regularity, necessitating advance preparation and large-scale, coordinated response. Here, we developed a machine learning predictive model of disease severity and length of hospitalization for COVID-19, which can be utilized as a platform for future unknown viral outbreaks. We combined untargeted metabolomics on plasma data obtained from COVID-19 patients (n = 111) during hospitalization and healthy controls (n = 342), clinical and comorbidity data (n = 508) to build this patient triage platform, which consists of three parts: (i) the clinical decision tree, which amongst other biomarkers showed that patients with increased eosinophils have worse disease prognosis and can serve as a new potential biomarker with high accuracy (AUC = 0.974), (ii) the estimation of patient hospitalization length with ± 5 days error (R2 = 0.9765) and (iii) the prediction of the disease severity and the need of patient transfer to the intensive care unit. We report a significant decrease in serotonin levels in patients who needed positive airway pressure oxygen and/or were intubated. Furthermore, 5-hydroxy tryptophan, allantoin, and glucuronic acid metabolites were increased in COVID-19 patients and collectively they can serve as biomarkers to predict disease progression. The ability to quickly identify which patients will develop life-threatening illness would allow the efficient allocation of medical resources and implementation of the most effective medical interventions. We would advocate that the same approach could be utilized in future viral outbreaks to help hospitals triage patients more effectively and improve patient outcomes while optimizing healthcare resources
Benchmark datasets for 3D MALDI- and DESI-imaging mass spectrometry
BACKGROUND: Three-dimensional (3D) imaging mass spectrometry (MS) is an analytical chemistry technique for the 3D molecular analysis of a tissue specimen, entire organ, or microbial colonies on an agar plate. 3D-imaging MS has unique advantages over existing 3D imaging techniques, offers novel perspectives for understanding the spatial organization of biological processes, and has growing potential to be introduced into routine use in both biology and medicine. Owing to the sheer quantity of data generated, the visualization, analysis, and interpretation of 3D imaging MS data remain a significant challenge. Bioinformatics research in this field is hampered by the lack of publicly available benchmark datasets needed to evaluate and compare algorithms. FINDINGS: High-quality 3D imaging MS datasets from different biological systems at several labs were acquired, supplied with overview images and scripts demonstrating how to read them, and deposited into MetaboLights, an open repository for metabolomics data. 3D imaging MS data were collected from five samples using two types of 3D imaging MS. 3D matrix-assisted laser desorption/ionization imaging (MALDI) MS data were collected from murine pancreas, murine kidney, human oral squamous cell carcinoma, and interacting microbial colonies cultured in Petri dishes. 3D desorption electrospray ionization (DESI) imaging MS data were collected from a human colorectal adenocarcinoma. CONCLUSIONS: With the aim to stimulate computational research in the field of computational 3D imaging MS, selected high-quality 3D imaging MS datasets are provided that could be used by algorithm developers as benchmark datasets
Recommended from our members
Microbial−mammalian cometabolites dominate the age-associated urinary metabolic phenotype in Taiwanese and American populations
Understanding the metabolic processes associated with aging is key to developing effective management and treatment strategies for age-related diseases. We investigated the metabolic profiles associated with age in a Taiwanese and an American population. 1H NMR spectral profiles were generated for urine specimens collected from the Taiwanese Social Environment and Biomarkers of Aging Study (SEBAS; n = 857; age 54–91 years) and the Mid-Life in the USA study (MIDUS II; n = 1148; age 35–86 years). Multivariate and univariate linear projection methods revealed some common age-related characteristics in urinary metabolite profiles in the American and Taiwanese populations, as well as some distinctive features. In both cases, two metabolites—4-cresyl sulfate (4CS) and phenylacetylglutamine (PAG)—were positively associated with age. In addition, creatine and β-hydroxy-β-methylbutyrate (HMB) were negatively correlated with age in both populations (p < 4 × 10–6). These age-associated gradients in creatine and HMB reflect decreasing muscle mass with age. The systematic increase in PAG and 4CS was confirmed using ultraperformance liquid chromatography–mass spectrometry (UPLC–MS). Both are products of concerted microbial–mammalian host cometabolism and indicate an age-related association with the balance of host–microbiome metabolism
- …