115 research outputs found

    Anthropometric criteria, somatotype and functional performance of basketball players at diff erent stages of sports training

    Get PDF
    Objective: to identify the correlation between physical development, somatic physique type, biological maturation and playing positions in basketball. Materials and methods: 112 male basketball players were divided into two groups: group 1 included 75 9-10 year-old young basketball players at the initial training; group 2 included 37 23-31 year-old professional basketball players. We evaluated the age, body mass, body mass index (BMI), body fat, body height, arm span, relaxed and flexed arm girth, calf girth, and skinfold thickness (triceps, biceps, iliac, abdominal). Results: the young basketball players demonstrated signifi cantly lower values of body height, arm span, body mass, body fat, relaxed and flexed arm girth, and calf girth. Both young and professional basketball players had macrosomatic physique type. Group 2 adult professional guards and forwards had signifi cant diff erences in body height. Adult centers had the largest arm span; on the other hand, the arm span of the adult guards was the smallest. The centers and forwards had principally macrosomatic physique type while the adult guards had mesosomatic physique type. Conclusions: the adult professional basketball players varied in their antropometric parameters according to playing positions but there was no difference between young basketball players; the body mass, body height, and arm span were the most important parameters. Centers should be of macrosomatic physique type, and had arm span more than forwards and guards. Therefore, the data of physical growth level, somatic physique type, and biological maturation rate should be considered in basketball player selection

    Transport, optical and electronic properties of the half metal CrO2

    Full text link
    The electronic structure of CrO_2 is critically discussed in terms of the relation of existing experimental data and well converged LSDA and GGA calculations of the electronic structure and transport properties of this half metal magnet, with a particular emphasis on optical properties. We find only moderate manifestations of many body effects. Renormalization of the density of states is not large and is in the typical for transition metals range. We find substantial deviations from Drude behavior in the far-infrared optical conductivity. These appear because of the unusually low energy of interband optical transitions. The calculated mass renormalization is found to be rather sensitive to the exchange-correlation functional used and varies from 10% (LSDA) to 90% (GGA), using the latest specific heat data. We also find that dressing of the electrons by spin fluctuations, because of their high energy, renormalizes the interband optical transition at as high as 4 eV by about 20%. Although we find no clear indications of strong correlations of the Hubbard type, strong electron-magnon scattering related to the half metallic band structure is present and this leads to a nontrivial temperature dependence of the resistivity and some renormalization of the electron spectra.Comment: 9 Revtex 2 column pages, including 8 postscript figures. Two more figures are included in the submission that are not embedded in the paper, representing DOS and bandstructure of the paramagnetic CrO

    Structural, electronic, and magneto-optical properties of YVO3_3

    Get PDF
    Optical and magneto-optical properties of YVO3_3 single crystal were studied in FIR, visible, and UV regions. Two structural phase transitions at 75 K and 200 K were observed and established to be of the first and second order, respectively. The lattice has an orthorhombic PbnmPbnm symmetry both above 200 K as well as below 75 K, and is found to be dimerized monoclinic Pb11Pb11 in between. We identify YVO3_3 as a Mott-Hubbard insulator with the optical gap of 1.6 eV. The electronic excitations in the visible spectrum are determined by three dd-bands at 1.8, 2.4, and 3.3 eV, followed by the charge-transfer transitions at about 4 eV. The observed structure is in good agreement with LSDA+UU band structure calculations. By using ligand field considerations, we assigned these bands to the transitions to the 4A2g^4A_{2g}, 2Eg+2T1g^2E_{g} + ^2T_{1g}, and 2T2g^2T_{2g} states. The strong temperature dependence of these bands is in agreement with the formation of orbital order. Despite the small net magnetic moment of 0.01 μB\mu_B per vanadium, the Kerr effect of the order of 0.010.01^\circ was observed for all three dd-bands in the magnetically ordered phase TNeˊel<116KT_{\text{N\'eel}}<116 K. A surprisingly strong enhancement of the Kerr effect was found below 75 K, reaching a maximum of 0.10.1^\circ. The effect is ascribed to the non-vanishing net orbital magnetic moment.Comment: Submitted to Phys. Rev.

    Continuous selections of multivalued mappings

    Full text link
    This survey covers in our opinion the most important results in the theory of continuous selections of multivalued mappings (approximately) from 2002 through 2012. It extends and continues our previous such survey which appeared in Recent Progress in General Topology, II, which was published in 2002. In comparison, our present survey considers more restricted and specific areas of mathematics. Note that we do not consider the theory of selectors (i.e. continuous choices of elements from subsets of topological spaces) since this topics is covered by another survey in this volume

    Effects of Crystal Structure and the On-Site Coulomb Interactions on the Electronic and Magnetic Structure of Pyrochlores A2A_2Mo2_2O7_7 (A= Y, Gd, and Nd)

    Full text link
    Being motivated by recent experimental studies, we investigate magnetic structures of the Mo pyrochlores A2A_2Mo2_2O7_7 (AA= Y, Nd, and Gd) and their impact on the electronic properties. The latter are closely related with the behavior of twelve Mo(t2gt_{2g}) bands, located near the Fermi level and well separated from the rest of the spectrum. We use a mean-field Hartree-Fock approach, which combines fine details of the electronic structure for these bands, extracted from the conventional calculations in the local-density approximation, the spin-orbit interaction, and the on-site Coulomb interactions amongst the Mo(4d) electrons, treated in the most general rotationally invariant form. The Coulomb repulsion U plays a very important role in the problem, and the semi-empirical value U\sim1.5-2.5 eV accounts simultaneously for the metal-insulator (M-I) transition, the ferromagnetic (FM) - spin-glass (SG) transition, and for the observed enhancement of the anomalous Hall effect (AHE). The M-I transition is mainly controlled by UU. The magnetic structure at the metallic side is nearly collinear FM, due to the double exchange mechanism. The transition into the insulating state is accompanied by the large canting of spin and orbital magnetic moments. The sign of exchange interactions in the insulating state is controlled by the Mo-Mo distances. Smaller distances favor the antiferromagnetic coupling, which preludes the SG behavior in the frustrated pyrochlore lattice. Large AHE is expected in the nearly collinear FM state, near the point of M-I transition, and is related with the unquenched orbital magnetization at the Mo sites. We also predict large magneto-optical effect in the same FM compounds.Comment: 26 pages, 17 figures (low resolution is used for Figs. 6, 8, and 9, please contact directly if you need the originals), 1 tabl
    corecore