10,515 research outputs found
Simulations of Electron Capture and Low-Mass Iron Core Supernovae
The evolutionary pathways of core-collapse supernova progenitors at the
low-mass end of the spectrum are beset with major uncertainties. In recent
years, a variety of evolutionary channels has been discovered in addition to
the classical electron capture supernova channel of super-AGB stars. The few
available progenitor models at the low-mass end have been studied with great
success in supernova simulations as the peculiar density structure makes for
robust neutrino-driven explosions in this mass range. Detailed nucleosynthesis
calculations have been conducted both for models of electron capture supernovae
and low-mass iron core supernovae and revealed an interesting production of the
lighter trans-iron elements (such as Zn, Sr, Y, Zr) as well as rare isotopes
like Ca-48 and Fe-60. We stress the need to explore the low-mass end of the
supernova spectrum further and link various observables to understand the
diversity of explosions in this regime.Comment: 7 page, 3 figures, proceedings of the conference "The AGB-Supernova
Mass Transition", to appear in Memorie della Societ\`a Astronomica Italian
The Geometry and Ionization Structure of the Wind in the Eclipsing Nova-like Variables RW Tri and UX UMa
The UV spectra of nova-like variables are dominated by emission from the
accretion disk, modified by scattering in a wind emanating from the disk. Here
we model the spectra of RW Tri and UX UMa, the only two eclipsing nova-likes
which have been observed with the Hubble Space Telescope in the
far-ultraviolet, in an attempt to constrain the geometry and the ionization
structure of their winds. Using our Monte Carlo radiative transfer code we
computed spectra for simply-parameterized axisymmetric biconical outflow models
and were able to find plausible models for both systems. These reproduce the
primary UV resonance lines - N V, Si IV, and C IV - in the observed spectra in
and out of eclipse. The distribution of these ions in the wind models is
similar in both cases as is the extent of the primary scattering regions in
which these lines are formed. The inferred mass loss rates are 6% to 8% of the
mass accretion rates for the systems. We discuss the implication of our point
models for our understanding of accretion disk winds in cataclysmic variables.Comment: 13 pages, 15 figures and 4 tables. Published in Ap
Type Ia Supernovae and Accretion Induced Collapse
Using the population synthesis binary evolution code StarTrack, we present
theoretical rates and delay times of Type Ia supernovae arising from various
formation channels. These channels include binaries in which the exploding
white dwarf reaches the Chandrasekhar mass limit (DDS, SDS, and helium-rich
donor scenario) as well as the sub-Chandrasekhar mass scenario, in which a
white dwarf accretes from a helium-rich companion and explodes as a SN Ia
before reaching the Chandrasekhar mass limit. We find that using a common
envelope parameterization employing energy balance with alpha=1 and lambda=1,
the supernova rates per unit mass (born in stars) of sub-Chandrasekhar mass SNe
Ia exceed those of all other progenitor channels at epochs t=0.7 - 4 Gyr for a
burst of star formation at t=0. Additionally, the delay time distribution of
the sub-Chandrasekhar model can be divided in to two distinct evolutionary
channels: the `prompt' helium-star channel with delay times < 500 Myr, and the
`delayed' double white dwarf channel with delay times > 800 Myr spanning up to
a Hubble time. These findings are in agreement with recent
observationally-derived delay time distributions which predict that a large
number of SNe Ia have delay times < 1 Gyr, with a significant fraction having
delay times < 500 Myr. We find that the DDS channel is also able to account for
the observed rates of SNe Ia. However, detailed simulations of white dwarf
mergers have shown that most of these mergers will not lead to SNe Ia but
rather to the formation of a neutron star via accretion-induced collapse. If
this is true, our standard population synthesis model predicts that the only
progenitor channel which can account for the rates of SNe Ia is the
sub-Chandrasekhar mass scenario, and none of the other progenitors considered
can fully account for the observed rates.Comment: 6 pages, 1 figure, 1 table, to appear in proceedings for "Binary Star
Evolution: Mass Loss, Accretion and Mergers
The Impact of Accretion Disk Winds on the Optical Spectra of Cataclysmic Variables
Many high-state non-magnetic cataclysmic variables (CVs) exhibit blue-shifted
absorption or P-Cygni profiles associated with ultraviolet (UV) resonance
lines. These features imply the existence of powerful accretion disk winds in
CVs. Here, we use our Monte Carlo ionization and radiative transfer code to
investigate whether disk wind models that produce realistic UV line profiles
are also likely to generate observationally significant recombination line and
continuum emission in the optical waveband. We also test whether outflows may
be responsible for the single-peaked emission line profiles often seen in
high-state CVs and for the weakness of the Balmer absorption edge (relative to
simple models of optically thick accretion disks). We find that a standard disk
wind model that is successful in reproducing the UV spectra of CVs also leaves
a noticeable imprint on the optical spectrum, particularly for systems viewed
at high inclination. The strongest optical wind-formed recombination lines are
H and He II . We demonstrate that a higher-density outflow
model produces all the expected H and He lines and produces a recombination
continuum that can fill in the Balmer jump at high inclinations. This model
displays reasonable verisimilitude with the optical spectrum of RW Trianguli.
No single-peaked emission is seen, although we observe a narrowing of the
double-peaked emission lines from the base of the wind. Finally, we show that
even denser models can produce a single-peaked H line. On the basis of
our results, we suggest that winds can modify, and perhaps even dominate, the
line and continuum emission from CVs.Comment: 15 pages, 13 figures. Accepted to MNRA
Detecting the signatures of helium in type Iax supernovae
Recent studies have argued that the progenitor system of type Iax supernovae
must consist of a carbon-oxygen white dwarf accreting from a helium star
companion. Based on existing explosion models invoking the pure deflagration of
carbon-oxygen white dwarfs, we investigate the likelihood of producing spectral
features due to helium in type Iax supernovae. From this scenario, we select
those explosion models producing ejecta and Ni masses that are broadly
consistent with those estimated for type Iax supernovae (0.014 -
0.478~ and - 0.183~, respectively). To this
end, we present a series of models of varying luminosities (~mag) with helium abundances accounting for up to
36\% of the ejecta mass, and covering a range of epochs beginning a few
days before Bband maximum to approximately two weeks after maximum. We find
that the best opportunity for detecting \ion{He}{i} features is at
near-infrared wavelengths, and in the post-maximum spectra of the fainter
members of this class. We show that the optical spectrum of SN~2007J is
potentially consistent with a large helium content (a few 10),
but argue that current models of accretion and material stripping from a
companion struggle to produce compatible scenarios. We also investigate the
presence of helium in all objects with near-infrared spectra. We show that
SNe~2005hk, 2012Z, and 2015H contain either no helium or their helium
abundances are constrained to much lower values
(10). Our results demonstrate the differences in
helium content among type Iax supernovae, perhaps pointing to different
progenitor channels. Either SN~2007J is an outlier in terms of its progenitor
system, or it is not a true member of the type Iax supernova class.Comment: 15 pages, 12 figures, 2 tables. Accepted for publication in Astronomy
and Astrophysic
Deflagrations in hybrid CONe white dwarfs: a route to explain the faint Type Iax supernova 2008ha
Stellar evolution models predict the existence of hybrid white dwarfs (WDs)
with a carbon-oxygen core surrounded by an oxygen-neon mantle. Being born with
masses ~1.1 Msun, hybrid WDs in a binary system may easily approach the
Chandrasekhar mass (MCh) by accretion and give rise to a thermonuclear
explosion. Here, we investigate an off-centre deflagration in a near-MCh hybrid
WD under the assumption that nuclear burning only occurs in carbon-rich
material. Performing hydrodynamics simulations of the explosion and detailed
nucleosynthesis post-processing calculations, we find that only 0.014 Msun of
material is ejected while the remainder of the mass stays bound. The ejecta
consist predominantly of iron-group elements, O, C, Si and S. We also calculate
synthetic observables for our model and find reasonable agreement with the
faint Type Iax SN 2008ha. This shows for the first time that deflagrations in
near-MCh WDs can in principle explain the observed diversity of Type Iax
supernovae. Leaving behind a near-MCh bound remnant opens the possibility for
recurrent explosions or a subsequent accretion-induced collapse in faint Type
Iax SNe, if further accretion episodes occur. From binary population synthesis
calculations, we find the rate of hybrid WDs approaching MCh to be on the order
of 1 percent of the Galactic SN Ia rate.Comment: 9 pages, 7 figures, 2 tables, accepted for publication in MNRA
Phonon emission and arrival times of electrons from a single-electron source
In recent charge-pump experiments, single electrons are injected into quantum Hall edge channels at energies significantly above the Fermi level. We consider here the relaxation of these hot edge-channel electrons through longitudinal-optical-phonon emission. Our results show that the probability for an electron in the outermost edge channel to emit one or more phonons en route to a detector some microns distant along the edge channel suffers a double-exponential suppression with increasing magnetic field. This explains recent experimental observations. We also describe how the shape of the arrival-time distribution of electrons at the detector reflects the velocities of the electronic states post phonon emission. We show how this can give rise to pronounced oscillations in the arrival-time-distribution width as a function of magnetic field or electron energy
- …
