3,643 research outputs found

    Optical pattern formation with a 2-level nonlinearity

    Get PDF
    We present an experimental and theoretical investigation of spontaneous pattern formation in the transverse section of a single retro-reflected laser beam passing through a cloud of cold Rubidium atoms. In contrast to previously investigated systems, the nonlinearity at work here is that of a 2-level atom, which realizes the paradigmatic situation considered in many theoretical studies of optical pattern formation. In particular, we are able to observe the disappearance of the patterns at high intensity due to the intrinsic saturable character of 2-level atomic transitions.Comment: 5 pages, 4 figure

    Photometric Monitoring of the Gravitationally Lensed Ultraluminous BAL Quasar APM08279+5255

    Full text link
    We report on one year of photometric monitoring of the ultraluminous BAL quasar APM 08279+5255. The temporal sampling reveals that this gravitationally lensed system has brightened by ~0.2 mag in 100 days. Two potential causes present themselves; either the variability is intrinsic to the quasar, or it is the result of microlensing by stars in a foreground system. The data is consistent with both hypotheses and further monitoring is required before either case can be conclusively confirmed. We demonstrate, however, that gravitational microlensing can not play a dominant role in explaining the phenomenal properties exhibited by APM 08279+5255. The identification of intrinsic variability, coupled with the simple gravitational lensing configuration, would suggest that APM 08279+5255 is a potential golden lens from which the cosmological parameters can be derived and is worthy of a monitoring program at high spatial resolution.Comment: 17 pages, with 2 figures. Accepted for publication in P.A.S.

    Biochar's cost constraints are overcome in small‐scale farming in tropical soils in lower‐income countries

    Get PDF
    Biochar has been lauded for its potential to mitigate climate change, increase crop yields and reverse land degradation in tropical agricultural systems. Despite its benefits, confusion persists about whether the use of biochar is financially feasible as a soil ameliorant. A comprehensive review of previous studies of biochar's financial feasibility was performed (33 relevant publications). Financial performance appraisal (USMg‐1biochar)andgreenhousegasabatementcostestimates(US Mg‐1 biochar) and greenhouse gas abatement cost estimates (US Mg‐1 CO2e) were used to gauge the financial feasibility of the biochar scenarios within each publication. Ordinary Least Squares Multiple Linear Regression was used to evaluate the predictive capacity of scenario financial feasibility as dependent on variables including national income levels, climatic conditions, pyrolysis technology scales and pyrolysis capabilities. Analysis revealed that scenarios where biochar was applied targeting yield increases in high‐value crops in tropical locations with low incomes and biochar‐focused small‐scale production, were overall significant predictors of biochar scenario financial feasibility. We find that the average abatement cost of biochar applied in ‘lower‐income countries' is ‐US58Mg‐1CO2e(financiallyfeasible)comparedwith+US58 Mg‐1 CO2e (financially feasible) compared with +US93 Mg‐1 CO2e in ‘higher‐income countries' (not financially feasible). Climate policies of lower‐income countries in tropical climates should consider biochar as an input for small‐scale climate smart agriculture to address land degradation in tropical agricultural systems. Based on recent evidence it is suggested that biochar fertilizers, a value‐added biochar product, could present a commercially feasible pathway for biochar value‐chain development in higher‐income countries

    Measurement and feedback for cooling heavy levitated particles in low-frequency traps

    Get PDF
    We consider a possible route to ground-state cooling of a levitated nanoparticle, magnetically trapped by a strong permanent magnet, using a combination of measurement and feedback. The trap frequency of this system is much lower than those involving trapped ions or nanomechanical resonators. Minimization of environmental heating is therefore challenging as it requires control of the system on a timescale comparable to the inverse of the trap frequency. We show that these traps are an excellent platform for performing optimal feedback control via real-time state estimation, for the preparation of motional states with measurable quantum properties

    Serum Vitamin D Levels and Polycystic Ovary syndrome: A Systematic Review and Meta-Analysis

    Get PDF
    Citation: He, C. L., Lin, Z., Robb, S. W., & Ezeamama, A. E. (2015). Serum Vitamin D Levels and Polycystic Ovary syndrome: A Systematic Review and Meta-Analysis. Nutrients, 7(6), 4555-4577. doi:10.3390/nu7064555Vitamin D deficiency (VDD) is common in women with and without polycystic ovary syndrome (PCOS) and may be associated with metabolic and endocrine disorders in PCOS. The aim of this meta-analysis is to assess the associations of serum vitamin D levels with metabolic and endocrine dysregulations in women with PCOS, and to determine effects of vitamin D supplementation on metabolic and hormonal functions in PCOS patients. The literature search was undertaken through five databases until 16 January 2015 for both observational and experimental studies concerning relationships between vitamin D and PCOS. A total of 366 citations were identified, of which 30 were selected (n = 3182). We found that lower serum vitamin D levels were related to metabolic and hormonal disorders in women with PCOS. Specifically, PCOS patients with VDD were more likely to have dysglycemia (e.g., increased levels of fasting glucose and homeostatic model assessment-insulin resistance index (HOMA-IR)) compared to those without VDD. This meta-analysis found no evidence that vitamin D supplementation reduced or mitigated metabolic and hormonal dysregulations in PCOS. VDD may be a comorbid manifestation of PCOS or a minor pathway in PCOS associated metabolic and hormonal dysregulation. Future prospective observational studies and randomized controlled trials with repeated VDD assessment and better characterization of PCOS disease severity at enrollment are needed to clarify whether VDD is a co-determinant of hormonal and metabolic dysregulations in PCOS, represents a consequence of hormonal and metabolic dysregulations in PCOS or both

    Residential Water Meters as Edge Computing Nodes: Disaggregating End Uses and Creating Actionable Information at the Edge

    Get PDF
    We present a new, open source, computationally capable datalogger for collecting and analyzing high temporal resolution residential water use data. Using this device, execution of water end use disaggregation algorithms or other data analytics can be performed directly on existing, analog residential water meters without disrupting their operation, effectively transforming existing water meters into smart, edge computing devices. Computation of water use summaries and classified water end use events directly on the meter minimizes data transmission requirements, reduces requirements for centralized data storage and processing, and reduces latency between data collection and generation of decision-relevant information. The datalogger couples an Arduino microcontroller board for data acquisition with a Raspberry Pi computer that serves as a computational resource. The computational node was developed and calibrated at the Utah Water Research Laboratory (UWRL) and was deployed for testing on the water meter for a single-family residential home in Providence City, UT, USA. Results from field deployments are presented to demonstrate the data collection accuracy, computational functionality, power requirements, communication capabilities, and applicability of the system. The computational node’s hardware design and software are open source, available for potential reuse, and can be adapted to specific research needs

    A perpetual switching system in pulmonary capillaries

    Get PDF
    Of the 300 billion capillaries in the human lung, a small fraction meet normal oxygen requirements at rest, with the remainder forming a large reserve. The maximum oxygen demands of the acute stress response require that the reserve capillaries are rapidly recruited. To remain primed for emergencies, the normal cardiac output must be parceled throughout the capillary bed to maintain low opening pressures. The flow-distributing system requires complex switching. Because the pulmonary microcirculation contains contractile machinery, one hypothesis posits an active switching system. The opposing hypothesis is based on passive switching that requires no regulation. Both hypotheses were tested ex vivo in canine lung lobes. The lobes were perfused first with autologous blood, and capillary switching patterns were recorded by videomicroscopy. Next, the vasculature of the lobes was saline flushed, fixed by glutaraldehyde perfusion, flushed again, and then reperfused with the original, unfixed blood. Flow patterns through the same capillaries were recorded again. The 16-min-long videos were divided into 4-s increments. Each capillary segment was recorded as being perfused if at least one red blood cell crossed the entire segment. Otherwise it was recorded as unperfused. These binary measurements were made manually for each segment during every 4 s throughout the 16-min recordings of the fresh and fixed capillaries (>60,000 measurements). Unexpectedly, the switching patterns did not change after fixation. We conclude that the pulmonary capillaries can remain primed for emergencies without requiring regulation: no detectors, no feedback loops, and no effectors-a rare system in biology. NEW & NOTEWORTHY The fluctuating flow patterns of red blood cells within the pulmonary capillary networks have been assumed to be actively controlled within the pulmonary microcirculation. Here we show that the capillary flow switching patterns in the same network are the same whether the lungs are fresh or fixed. This unexpected observation can be successfully explained by a new model of pulmonary capillary flow based on chaos theory and fractal mathematics
    • 

    corecore