1,659 research outputs found

    Oxygen-isotope effect on the in-plane penetration depth in cuprate superconductors

    Full text link
    Muon-spin rotation (muSR) studies of the oxygen isotope (^{16}O/^{18}O) effect (OIE) on the in-plane magnetic field penetration depth lambda_{ab} in cuprate high-temperature superconductors (HTS) are presented. First, the doping dependence of the OIE on the transition temperature T_c in various HTS is briefly discussed. It is observed that different cuprate families show a similar doping dependence of the OIE on T_c. Then, bulk muSR, low-energy muSR, and magnetization studies of the total and site-selective OIE on lambda_{ab} are described in some detail. A substantial OIE on lambda_{ab} was observed in various cuprate families at all doping levels, suggesting that cuprate HTS are non-adiabatic superconductors. The experiments clearly demonstrate that the total OIE on T_c and lambda_{ab} arise from the oxygen sites within the superconducting CuO_2 planes, demonstrating that the phonon modes involving the movement of planar oxygen are dominantly coupled to the supercarriers. Finally, it is shown that the OIE on T_c and lambda_{ab} exhibit a relation that appears to be generic for different families of cuprate HTS. The observation of these unusual isotope effects implies that lattice effects play an essential role in cuprate HTS and have to be considered in any realistic model of high-temperature superconductivity.Comment: 22 pages, 12 figures. To be published in a special issue of J. Phys. Cond. Ma

    Optimal squeezing, pure states, and amplification of squeezing in resonance fluorescence

    Get PDF
    It is shown that 100% squeezed output can be produced in the resonance fluorescence from a coherently driven two-level atom interacting with a squeezed vacuum. This is only possible for N=1/8N=1/8 squeezed input, and is associated with a pure atomic state, i.e., a completely polarized state. The quadrature for which optimal squeezing occurs depends on the squeezing phase Φ,\Phi , the Rabi frequency Ω,\Omega , and the atomic detuning Δ\Delta . Pure states are described for arbitrary Φ,\Phi , not just Φ=0\Phi =0 or π\pi as in previous work. For small values of N,N, there may be a greater degree of squeezing in the output field than the input - i.e., we have squeezing amplification.Comment: 6 pages & 7 figures, Submitted to Phys. Rev.

    Magnetic skyrmions and their lattices in triplet superconductors

    Full text link
    Complete topological classification of solutions in SO(3) symmetric Ginzburg-Landau free energy has been performed and a new class of solutions in weak external magnetic field carrying two units of magnetic flux has been identified. These solutions, magnetic skyrmions, do not have singular core like Abrikosov vortices and at low magnetic field become lighter for strongly type II superconductors. As a consequence, the lower critical magnetic field Hc1 is reduced by a factor of log(kappa). Magnetic skyrmions repel each other as 1/r at distances much larger then magnetic penetration depth forming relatively robust triangular lattice. Magnetic induction near Hc1 increases gradually as (H-Hc1)^2. This agrees very well with experiments on heavy fermion superconductor UPt3. Newly discovered Ru based compounds Sr2RuO4 and Sr2YRu(1-x)Cu(x)O6 are other possible candidates to possess skyrmion lattices. Deviations from exact SO(3) symmetry are also studied.Comment: 23 pages, 10 eps figure

    Role of Orbital Degeneracy in Double Exchange Systems

    Full text link
    We investigate the role of orbital degeneracy in the double exchange (DE) model. In the JHJ_{H}\to\infty limit, an effective generalized ``Hubbard'' model incorporating orbital pseudospin degrees of freedom is derived. The model possesses an exact solution in one- and in infinite dimensions. In 1D, the metallic phase off ``half-filling'' is a Luttinger liquid with pseudospin-charge separation. Using the d=d=\infty solution for our effective model, we show how many experimental observations for the well-doped (x0.3x\simeq 0.3) three-dimensional manganites La1xSrxMnO3La_{1-x}Sr_{x}MnO_{3} can be qualitatively explained by invoking the role of orbital degeneracy in the DE model.Comment: 8 pages, 2 figures, submitted to Phys. Rev.

    Density Distribution in the Liquid Hg-Sapphire Interface

    Full text link
    We present the results of a computer simulation study of the liquid density distribution normal to the interface between liquid Hg and the reconstructed (0001) face of sapphire. The simulations are based on an extension of the self-consistent quantum Monte Carlo scheme previously used to study the structure of the liquid metal-vapor interface. The calculated density distribution is in very good agreement with that inferred from the recent experimental data of Tamam et al (J. Phys. Chem. Lett. 1, 1041-1045 (2010)). We conclude that, to account for the difference in structure between the liquid Hg-vapor and liquid-Hg-reconstructed (0001) Al2O3 interfaces, it is not necessary assume there is charge transfer from the Hg to the Al2O3. Rather, the available experimental data are adequately reproduced when the van der Waals interactions of the Al and O atoms with Hg atoms and the exclusion of electron density from Al2O3 via repulsion of the electrons from the closed shells of the ions in the solid are accounted for.Comment: 26 pages, 11 figure

    A novel PKC activating molecule promotes neuroblast differentiation and delivery of newborn neurons in brain injuries

    Get PDF
    Neural stem cells are activated within neurogenic niches in response to brain injuries. This results in the production of neuroblasts, which unsuccessfully attempt to migrate toward the damaged tissue. Injuries constitute a gliogenic/non-neurogenic niche generated by the presence of anti-neurogenic signals, which impair neuronal differentiation and migration. Kinases of the protein kinase C (PKC) family mediate the release of growth factors that participate in different steps of the neurogenic process, particularly, novel PKC isozymes facilitate the release of the neurogenic growth factor neuregulin. We have demonstrated herein that a plant derived diterpene, (EOF2; CAS number 2230806-06-9), with the capacity to activate PKC facilitates the release of neuregulin 1, and promotes neuroblasts differentiation and survival in cultures of subventricular zone (SVZ) isolated cells in a novel PKC dependent manner. Local infusion of this compound in mechanical cortical injuries induces neuroblast enrichment within the perilesional area, and noninvasive intranasal administration of EOF2 promotes migration of neuroblasts from the SVZ towards the injury, allowing their survival and differentiation into mature neurons, being some of them cholinergic and GABAergic. Our results elucidate the mechanism of EOF2 promoting neurogenesis in injuries and highlight the role of novel PKC isozymes as targets in brain injury regeneration

    Search for a Scalar Bottom Quark with Mass 3.5-4.5 GeV/c2c^{2}

    Full text link
    We report on a search for a supersymmetric B~\tilde{B} meson with mass between 3.5 and 4.5 GeV/c2c^2 using 4.52 fb1{\rm fb}^{-1} of integrated luminosity produced at s=10.52\sqrt{s}=10.52 GeV, just below the e+eBBˉe^+e^-\to B\bar{B} threshold, and collected with the CLEO detector. We find no evidence for a light scalar bottom quark.Comment: 10 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    The implication of identifying JAK2V617F in myeloproliferative neoplasms and myelodysplastic syndromes with bone marrow fibrosis

    Get PDF
    The myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS) occasionally demonstrate overlapping morphological features including hypercellularity, mild/nonspecific dysplastic changes and variable bone marrow fibrosis. Thus, when the associated bone marrow fibrosis results in a suboptimal specimen for morphological evaluation, the descriptive diagnosis “fibrotic marrow with features indeterminate for MDS versus MPN” is often applied. The JAK2V617F mutation was recently shown to be frequently identified in MPN, but it is rarely present in other myeloid disorders. However, the diagnostic utility of JAK2V617F screening in hypercellular bone marrow specimens with fibrosis has not been previously investigated. Using a real-time polymerase chain reaction melting-curve assay capable of detecting JAK2V617F in archived fixed materials, we retrospectively studied JAK2V617F in 45 cases with fibrotic hypercellular bone marrow at initial presentation, including 19 cases initially described as “with features indeterminate for MDS versus MPN”. These 19 cases were reclassified into more specific categories of MDS (n = 14) or MPN (n = 5) based on the availability of subsequent clinical data and/or bone marrow examinations. The JAK2V617F allele was identified in 17 out of 18 BCR/ABL gene-negative MPN cases with marrow fibrosis, whereas only wild-type alleles were identified in the remaining non-MPN cases. Importantly, JAK2V617F alleles were seen in all five cases of “with features indeterminate for MDS versus MPN” at initial presentation that were later determined to be MPN, but they were absent in the 14 cases later determined to be MDS. Our results suggest that JAK2V617F allele evaluation can be a useful ancillary test for discriminating MDS from MPN in specimens with bone marrow fibrosis

    Antioxidant defence of colostrum and milk in consecutive lactations in sows

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parturition is supposed to be related to oxidative stress, not only for the mother, but also for the newborn. Moreover, it is not clear whether consecutive pregnancies, parturitions, and lactations are similar to each other in regards to intensity of metabolic processes or differ from each other. The aim of the study was to compare dynamic changes of antioxidative parameters in colostrum and milk of sows taken during 72 h postpartum from animals in consecutive lactations. Activities of glutathione peroxidase (GSH-Px), glutathione transferase (GSH-Tr), and superoxide dismutase (SOD), and amount of vitamin A and C were measured. Healthy pregnant animals were divided into 4 groups according to the assessed lactation: A -1<sup>st </sup>lactation (n = 10), B - 2<sup>nd </sup>and 3<sup>rd </sup>lactation (n = 7), C - 4<sup>th </sup>and 5<sup>th </sup>lactation (n = 11), D - 6<sup>th </sup>- 8<sup>th </sup>lactation (n = 8). The colostrum was sampled immediately after parturition and after 6, 12, 18 and 36 h while the milk was assessed at 72 h after parturition. Spectrophotometric methods were used for measurements.</p> <p>Results</p> <p>The activity of antioxidative enzymes and the concentration of vitamin A increased with time postpartum. The concentration of vitamin C was the highest between the 18th and 36th h postpartum.</p> <p>Conclusions</p> <p>Dynamic changes in the values of antioxidant parameters measured during the study showed that sows milk provides the highest concentration of antioxidants in the 2<sup>nd </sup>and 3<sup>rd </sup>and 4<sup>th </sup>and 5<sup>th </sup>lactation giving the best defence against reactive oxygen species to newborns and mammary glands.</p

    Transport of Anthocyanins and other Flavonoids by the Arabidopsis ATP-Binding Cassette Transporter AtABCC2

    Get PDF
    Flavonoids have important developmental, physiological, and ecological roles in plants and are primarily stored in the large central vacuole. Here we show that both an ATP-binding cassette (ABC) transporter(s) and an H+-antiporter(s) are involved in the uptake of cyanidin 3-O-glucoside (C3G) by Arabidopsis vacuolar membrane-enriched vesicles. We also demonstrate that vesicles isolated from yeast expressing the ABC protein AtABCC2 are capable of MgATP-dependent uptake of C3G and other anthocyanins. The uptake of C3G by AtABCC2 depended on the co-transport of glutathione (GSH). C3G was not altered during transport and a GSH conjugate was not formed. Vesicles from yeast expressing AtABCC2 also transported flavone and flavonol glucosides. We performed ligand docking studies to a homology model of AtABCC2 and probed the putative binding sites of C3G and GSH through site-directed mutagenesis and functional studies. These studies identified residues important for substrate recognition and transport activity in AtABCC2, and suggest that C3G and GSH bind closely, mutually enhancing each other’s binding. In conclusion, we suggest that AtABCC2 along with possibly other ABCC proteins are involved in the vacuolar transport of anthocyanins and other flavonoids in the vegetative tissue of Arabidopsis
    corecore