10,332 research outputs found

    The Sun, stellar-population models, and the age estimation of high-redshift galaxies

    Get PDF
    Given sufficiently deep optical spectroscopy, the age estimation of high-redshif t (z>1z > 1) galaxies has been claimed to be a relatively robust process (e.g. Dunlop et al. 1996) due to the fact that, for ages <5< 5Gyr, the near-ultraviolet light of a stellar population is expected to be dominated by `well-understood' main-sequence (MS) stars. Recently, however, the reliability of this process has been called into question by Yi et al (2000), who claim to have developed models in which the spectrum produced by the main sequence reddens much more rapidly than in the models of Jimenez et al (2000a), leading to much younger age estimates for the reddest known high-redshift ellipticals. In support of their revised age estimates, Yi et al cite the fact that their models can reproduce the spectrum of the Sun at an age of 5 Gyr, whereas the solar spectrum is not reproduced by the Jimenez et al models until ≃10\simeq 10 Gyr. Here we confirm this discrepancy, but point out that this is in fact a {\it strength} of the Jimenez et al models and indicative of some flaw in the models of Yi et al (which, in effect, imply that the Sun will turn into a red giant any minute now). We have also explored the models of Worthey (1994) (which are known to differ greatly from those of Jimenez et al in the treatment of post-MS evolution) and find that the main-sequence component of Worthey's models also cannot reproduce the solar spectrum until an age of 9-10 Gyr. We conclude that either the models of Yi et al are not as main-sequence dominated at 4-5 Gyr as claimed, or that the stellar evolutionary timescale in these models is in error by a factor possibly as high as two. (abridged)Comment: Submitted to MNRAS, final versio

    Optimal and Robust Quantum Metrology Using Interaction-Based Readouts

    Full text link
    Useful quantum metrology requires nonclassical states with a high particle number and (close to) the optimal exploitation of the state's quantum correlations. Unfortunately, the single-particle detection resolution demanded by conventional protocols, such as spin squeezing via one-axis twisting, places severe limits on the particle number. Additionally, the challenge of finding optimal measurements (that saturate the quantum Cram{\'e}r-Rao bound) for an arbitrary nonclassical state limits most metrological protocols to only moderate levels of quantum enhancement. "Interaction-based readout" protocols have been shown to allow optimal interferometry \emph{or} to provide robustness against detection noise at the expense of optimality. In this Letter, we prove that one has great flexibility in constructing an optimal protocol, thereby allowing it to also be robust to detection noise. This requires the full probability distribution of outcomes in an optimal measurement basis, which is typically easily accessible and can be determined from specific criteria we provide. Additionally, we quantify the robustness of several classes of interaction-based readouts under realistic experimental constraints. We determine that optimal \emph{and} robust quantum metrology is achievable in current spin-squeezing experiments.Comment: 7 pages, 3 figure

    Prospective genetic screening decreases the incidence of Abacavir hypersensitivity reactions in the Western Australian HIV cohort study

    Get PDF
    Abacavir therapy is associated with significant drug hypersensitivity in ∌8% of recipients, with retrospective studies indicating a strong genetic association with the HLA-B*5701 allelle. In this prospective study, involving 260 abacavir-naive individuals (7.7% of whom were positive for HLA-B*5701), we confirm the usefulness of genetic risk stratification, with no cases of abacavir hypersensitivity among 148 HLA-B*5701–negative recipients

    A note on behaviour at an isotropic singularity

    Get PDF
    The behaviour of Jacobi fields along a time-like geodesic running into an isotropic singularity is studied. It is shown that the Jacobi fields are crushed to zero length at a rate which is the same in every direction orthogonal to the geodesic. We show by means of a counter-example that this crushing effect depends crucially on a technicality of the definition of isotropic singularities, and not just on the uniform degeneracy of the metric at the singularity.Comment: 13 pp. plain latex. To appear in Classical and Quantum Gravit

    The star-formation histories of elliptical galaxies across the fundamental plane

    Get PDF
    We present the first results from a study designed to test whether, given high-quality spectrophotometry spanning the mid-UV--optical wavelength regime, it is possible to distinguish the metal content (Z) and star-formation history (sfh) of individual elliptical galaxies with sufficient accuracy to establish whether their formation history is linked to their detailed morphology and position on the Fundamental Plane. From a detailed analysis of UV-optical spectrophotometry of the `cuspy' elliptical galaxy NGC 3605 and the giant elliptical NGC 5018 we find that: 1) optical spectra with l > 3500 A may not contain sufficient data to robustly uncover all the stellar populations present in individual galaxies, even in such relatively passive objects as ellipticals, 2) the addition of the UV data approaching l = 2500 A holds the key to establishing well-constrained sfhs, from which we can infer a formation and evolution history which is consistent with their photometric properties, 3) despite the superficial similarity of their spectra, the two galaxies have very different `recent' sfhs -- the smaller, cuspy elliptical NGC 3605 contains a high-Z population of age ~= 1 Gyr, and has a position on the fundamental plane typical of the product of a low-z gas-rich merger (most likely at z ~ 0.08), while the giant elliptical NGC 5018, with a sub-solar secondary population, appears to have gained its more recent stars via mass transfer / accretion of gas from its spiral companion, 4) despite these differences in detailed history, more than 85% of the stellar mass of both galaxies is associated with an old (9-12 Gyr) stellar population of near-solar Z. This pilot study provides strong motivation for the construction and analysis of high-quality UV-optical spectra for a substantial sample of ellipticals spanning the Fundamental Plane.Comment: 11 pages, 10 figures, submitted to MNRAS, revised versio

    Chasing the second gamma-ray bright isolated neutron star: 3EG J1835+5918/RX J1836.2+5925

    Get PDF
    The EGRET telescope aboard NASAs Compton GRO has repeatedly detected 3EG J1835+5918, a bright and steady source of high-energy gamma-ray emission with no identification suggested until recently. The long absence of any likely counterpart for a bright gamma-ray source located 25 degrees off the Galactic plane initiated several attempts of deep observations at other wavelengths. We report on counterparts in X-rays on a basis of a 60 ksec ROSAT HRI image. In order to conclude on the plausibility of the X-ray counterparts, we reanalyzed data from EGRET at energies above 100 MeV and above 1 GeV, including data up to CGRO observation cycle 7. The gamma-ray source location represents the latest and probably the final positional assessment based on EGRET data. The X-ray counterparts were studied during follow-up optical identification campaigns, leaving only one object to be likely associated with the gamma-ray source 3EG J1835+5918. This object, RX J1836.2+5925, has the characteristics of an isolated neutron star and possibly of a radio-quiet pulsar.Comment: 5 pages, 3 figures. To appear in the Proceedings of the 270. WE-Heraeus Seminar on Neutron Stars, Pulsars and Supernova Remnants, Jan. 21-25, 2002, Physikzentrum Bad Honnef, eds W. Becker, H. Lesch & J. Truemper. Proceedings are available as MPE-Report 27

    The ages of quasar host galaxies

    Get PDF
    We present the results of fitting deep off-nuclear optical spectroscopy of radio-quiet quasars, radio-loud quasars and radio galaxies at z ~ 0.2 with evolutionary synthesis models of galaxy evolution. Our aim was to determine the age of the dynamically dominant stellar populations in the hos t galaxies of these three classes of powerful AGN. Some of our spectra display residual nuclear contamination at the shortest wavelengths, but the detailed quality of the fits longward of the 4000A break provide unequivocal proof, if further proof were needed, that quasars lie in massive galaxies with (at least at z ~ 0.2) evolved stellar populations. By fitting a two-component model we have separated the very blue (starburst and/or AGN contamination) from the redder underlying spectral energy distribution, and find that the hosts of all three classes of AGN are dominated by old stars of age 8 - 14 Gyr. If the blue component is attributed to young stars, we find that, at most, 1% of the baryonic mass of these galaxies is involved in star-formation activity at the epoch of observation. These results strongly support the conclusion reached by McLure et al. (1999) that the host galaxies of luminous quasars are massive ellipticals which formed prior to the peak epoch of quasar activity at z ~ 2.5.Comment: 24 pages, LaTeX, uses MNRAS style file, incorporates 19 postscript figures, final version, to be published in MNRA

    A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets

    Full text link
    We show that under certain circumstances the differences between the absorption mean and Planck mean opacities can lead to multiple solutions for an LTE atmospheric structure. Since the absorption and Planck mean opacities are not expected to differ significantly in the usual case of radiative equilibrium, non-irradiated atmospheres, the most interesting situations where the effect may play a role are strongly irradiated stars and planets, and also possibly structures where there is a significant deposition of mechanical energy, such as stellar chromospheres and accretion disks. We have presented an illustrative example of a strongly irradiated giant planet where the bifurcation effect is predicted to occur for a certain range of distances from the star.Comment: 22 pages, 6 figures, submitted to Ap

    The Impact of Dry Midlevel Air on Hurricane Intensity in Idealized Simulations with No Mean Flow

    Get PDF
    This study examines the potential negative influences of dry midlevel air on the development of tropical cyclones (specifically, its role in enhancing cold downdraft activity and suppressing storm development). The Weather Research and Forecasting model is used to construct two sets of idealized simulations of hurricane development in environments with different configurations of dry air. The first set of simulations begins with dry air located north of the vortex center by distances ranging from 0 to 270 km, whereas the second set of simulations begins with dry air completely surrounding the vortex, but with moist envelopes in the vortex core ranging in size from 0 to 150 km in radius. No impact of the dry air is seen for dry layers located more than 270 km north of the initial vortex center (approximately 3 times the initial radius of maximum wind). When the dry air is initially closer to the vortex center, it suppresses convective development where it entrains into the storm circulation, leading to increasingly asymmetric convection and slower storm development. The presence of dry air throughout the domain, including the vortex center, substantially slows storm development. However, the presence of a moist envelope around the vortex center eliminates the deleterious impact on storm intensity. Instead, storm size is significantly reduced. The simulations suggest that dry air slows intensification only when it is located very close to the vortex core at early times. When it does slow storm development, it does so primarily by inducing outward- moving convective asymmetries that temporarily shift latent heating radially outward away from the high-vorticity inner core
    • 

    corecore