Given sufficiently deep optical spectroscopy, the age estimation of
high-redshif t (z>1) galaxies has been claimed to be a relatively robust
process (e.g. Dunlop et al. 1996) due to the fact that, for ages <5Gyr, the
near-ultraviolet light of a stellar population is expected to be dominated by
`well-understood' main-sequence (MS) stars. Recently, however, the reliability
of this process has been called into question by Yi et al (2000), who claim to
have developed models in which the spectrum produced by the main sequence
reddens much more rapidly than in the models of Jimenez et al (2000a), leading
to much younger age estimates for the reddest known high-redshift ellipticals.
In support of their revised age estimates, Yi et al cite the fact that their
models can reproduce the spectrum of the Sun at an age of 5 Gyr, whereas the
solar spectrum is not reproduced by the Jimenez et al models until ≃10
Gyr. Here we confirm this discrepancy, but point out that this is in fact a
{\it strength} of the Jimenez et al models and indicative of some flaw in the
models of Yi et al (which, in effect, imply that the Sun will turn into a red
giant any minute now). We have also explored the models of Worthey (1994)
(which are known to differ greatly from those of Jimenez et al in the treatment
of post-MS evolution) and find that the main-sequence component of Worthey's
models also cannot reproduce the solar spectrum until an age of 9-10 Gyr. We
conclude that either the models of Yi et al are not as main-sequence dominated
at 4-5 Gyr as claimed, or that the stellar evolutionary timescale in these
models is in error by a factor possibly as high as two. (abridged)Comment: Submitted to MNRAS, final versio