35,625 research outputs found

    Two brains in action: joint-action coding in the primate frontal cortex

    Get PDF
    Daily life often requires the coordination of our actions with those of another partner. After sixty years (1968-2018) of behavioral neurophysiology of motor control, the neural mechanisms which allow such coordination in primates are unknown. We studied this issue by recording cell activity simultaneously from dorsal premotor cortex (PMd) of two male interacting monkeys trained to coordinate their hand forces to achieve a common goal. We found a population of 'joint-action cells' that discharged preferentially when monkeys cooperated in the task. This modulation was predictive in nature, since in most cells neural activity led in time the changes of the "own" and of the "other" behavior. These neurons encoded the joint-performance more accurately than 'canonical action-related cells', activated by the action per se, regardless of the individual vs. interactive context. A decoding of joint-action was obtained by combining the two brains activities, using cells with directional properties distinguished from those associated to the 'solo' behaviors. Action observation-related activity studied when one monkey observed the consequences of the partner's behavior, i.e. the cursor's motion on the screen, did not sharpen the accuracy of 'joint-action cells' representation, suggesting that it plays no major role in encoding joint-action. When monkeys performed with a non-interactive partner, such as a computer, 'joint-action cells' representation of the "other" (non-cooperative) behavior was significantly degraded. These findings provide evidence of how premotor neurons integrate the time-varying representation of the self-action with that of a co-actor, thus offering a neural substrate for successful visuo-motor coordination between individuals.SIGNIFICANT STATEMENTThe neural bases of inter-subject motor coordination were studied by recording cell activity simultaneously from the frontal cortex of two interacting monkeys, trained to coordinate their hand forces to achieve a common goal. We found a new class of cells, preferentially active when the monkeys cooperated, rather than when the same action was performed individually. These 'joint-action neurons' offered a neural representation of joint-behaviors by far more accurate than that provided by the canonical action-related cells, modulated by the action per se regardless of the individual/interactive context. A neural representation of joint-performance was obtained by combining the activity recorded from the two brains. Our findings offer the first evidence concerning neural mechanisms subtending interactive visuo-motor coordination between co-acting agents

    Ti and V layers retard interaction between Al films and polycrystalline Si

    Get PDF
    Fine-grained polycrystalline Si (poly Si) in contact with Al films recrystallizes at temperatures well below the Si-Al eutectic (577 °C). We show that this interaction can be deferred or suppressed by placing a buffer layer of Ti or V between the Al film and the poly Si. During annealing, Ti or V form TiAl3 or Val3 at the buffer-layer–Al-film interface, but do not react with the poly Si so that the integrity of the poly Si is preserved as long as some unreacted Ti or V remains. The reaction between the Ti or V layer and the Al film is transport limited ([proportional]t^1/2) and characterized by the diffusion constants 1.5×10^15 exp(–1.8eV/kT) Å^2/sec or 8.4×10^12 exp(–1.7eV/kT) Å^2/sec, respectively

    Sequence of phase formation in planar metal-Si reaction couples

    Get PDF
    A correlation is found between the sequence of phase formation in thin-film metal-Si interactions and the bulk equilibrium phase diagram. After formation of the first silicide phase, which generally follows the rule proposed by Walser and Bené, the next phase formed at the interface between the first phase and the remaining element (Si or metal) is the nearest congruently melting compound richer in the unreacted element. If the compounds between the first phase and the remaining element are all noncongruently melting compounds (such as peritectic or peritectoid phases), the next phase formed is that with the smallest temperature difference between the liquidus curve and the peritectic (or peritectoid) point

    National Foreclosure Mitigation Counseling Program Evaluation: Final Report, Rounds 3 Through 5

    Get PDF
    The Urban Institute completed a four-year evaluation of Rounds 3 through 5 of the National Foreclosure Mitigation Counseling (NFMC) program. Using a representative NFMC sample of 137,000 loans and a comparison non-NFMC sample of 103,000 loans, the Urban Institute was able to employ robust statistical techniques to isolate the impact of NFMC counseling on loan performance through June 2013.The final evaluation of Rounds 3 through 5 conducted by Urban Institute indicates that the NFMC program continues to have positive effects for homeowners participating in the program Counseled homeowners were more likely to cure a serious delinquency or foreclosure with a modification or other type cure, stay current after obtaining a cure, and for NFMC clients who cured a serious delinquency, avoid foreclosure altogether

    Systematic search for high-energy gamma-ray emission from bow shocks of runaway stars

    Full text link
    Context. It has been suggested that the bow shocks of runaway stars are sources of high-energy gamma rays (E > 100 MeV). Theoretical models predicting high-energy gamma-ray emission from these sources were followed by the first detection of non-thermal radio emission from the bow shock of BD+43^\deg 3654 and non-thermal X-ray emission from the bow shock of AE Aurigae. Aims. We perform the first systematic search for MeV and GeV emission from 27 bow shocks of runaway stars using data collected by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope (Fermi). Methods. We analysed 57 months of Fermi-LAT data at the positions of 27 bow shocks of runaway stars extracted from the Extensive stellar BOw Shock Survey catalogue (E-BOSS). A likelihood analysis was performed to search for gamma-ray emission that is not compatible with diffuse background or emission from neighbouring sources and that could be associated with the bow shocks. Results. None of the bow shock candidates is detected significantly in the Fermi-LAT energy range. We therefore present upper limits on the high-energy emission in the energy range from 100 MeV to 300 GeV for 27 bow shocks of runaway stars in four energy bands. For the three cases where models of the high-energy emission are published we compare our upper limits to the modelled spectra. Our limits exclude the model predictions for Zeta Ophiuchi by a factor \approx 5.Comment: 5 pages, 5 figures, 1 table, accepted by A&

    Heterostructure by solid‐phase epitaxy in the Si〈111〉/Pd/Si (amorphous) system

    Get PDF
    When a thin film of Pd reacts with a 〈111〉 Si substrate, a layer of epitaxial Pd_2Si is formed. It is shown that Si can grow epitaxially on such a layer by solid‐phase reaction

    Heteroepitaxy of deposited amorphous layer by pulsed electron-beam irradiation

    Get PDF
    We demonstrate that a single short pulse of electron irradiation of appropriate energy is capable of recrystallizing epitaxially an amorphous Ge layer deposited on either or Si single-crystal substrate. The primary defects observed in the case were dislocations, whereas stacking faults were observed in samples

    The Emotional Self-Efficacy Scale: Adaptation and Validation for Young Adolescents

    Get PDF
    Emotional self-efficacy (ESE) is an important aspect of emotional functioning, with current measures for children and adolescents focused on the measurement of self-beliefs in relation to the management of emotions. In the present study, we report the psychometric properties of the first adaptation of the Emotional Self-Efficacy Scale for youth (Youth-ESES) that measures additional aspects of ESE, such as perceiving and understanding emotions and helping others modulate their emotions. Participants were 192 young adolescents aged 11 to 13 years from a U.K. state school. They completed the Youth-ESES and measures of ability emotional intelligence (EI) and cognitive ability. Results support the same four-factor structure that has been previously documented using the adult version of the ESES, with the four subscales being largely independent from cognitive ability and only moderately related to ability EI. However, the four subscales were less differentiated in the present study compared with adult data previously published, suggesting that there is a strong general factor underlying young adolescents’ ESE scores. Overall, the results suggest that the adapted Youth-ESES can be reliably used with youth, and that confidence in how a young person feels about his or her emotional functioning remains distinct from emotional skill

    Providing the Third Dimension: High-resolution Multibeam Sonar as a Tool for Archaeological Investigations - An Example from the D-day Beaches of Normandy

    Get PDF
    In general, marine archaeological investigations begin in the archives, using historic maps, coast surveys, and other materials, to define submerged areas suspected to contain potentially significant historical sites. Following this research phase, a typical archaeological survey uses sidescan sonar and marine magnetometers as initial search tools. Targets are then examined through direct observation by divers, video, or photographs. Magnetometers can demonstrate the presence, absence, and relative susceptibility of ferrous objects but provide little indication of the nature of the target. Sidescan sonar can present a clear image of the overall nature of a target and its surrounding environment, but the sidescan image is often distorted and contains little information about the true 3-D shape of the object. Optical techniques allow precise identification of objects but suffer from very limited range, even in the best of situations. Modern high-resolution multibeam sonar offers an opportunity to cover a relatively large area from a safe distance above the target, while resolving the true three-dimensional (3-D) shape of the object with centimeter-level resolution. A clear demonstration of the applicability of highresolution multibeam sonar to wreck and artifact investigations occurred this summer when the Naval Historical Center (NHC), the Center for Coastal and Ocean Mapping (CCOM) at the University of New Hampshire, and Reson Inc., collaborated to explore the state of preservation and impact on the surrounding environment of a series of wrecks located off the coast of Normandy, France, adjacent to the American landing sectors The survey augmented previously collected magnetometer and high-resolution sidescan sonar data using a Reson 8125 high-resolution focused multibeam sonar with 240, 0.5° (at nadir) beams distributed over a 120° swath. The team investigated 21 areas in water depths ranging from about three -to 30 meters (m); some areas contained individual targets such as landing craft, barges, a destroyer, troop carrier, etc., while others contained multiple smaller targets such as tanks and trucks. Of particular interest were the well-preserved caissons and blockships of the artificial Mulberry Harbor deployed off Omaha Beach. The near-field beam-forming capability of the Reson 8125 combined with 3-D visualization techniques provided an unprecedented level of detail including the ability to recognize individual components of the wrecks (ramps, gun turrets, hatches, etc.), the state of preservation of the wrecks, and the impact of the wrecks on the surrounding seafloor
    corecore