5,251 research outputs found

    I-fibrinogen as an oncophilic radiodiagnostic agent: distribution kinetics in tumour-bearing mice.

    Get PDF
    Fibrinogen radioiodinated by the iodine monochloride method was tested as a tumour radiodiagnostic agent in mice. The I-fibrinogen cleared from the blood of tumour-bearing mice more rapidly than from that of normal mice, but it cleared from the whole body more slowly, suggesting it accumulated in a substantial tumour-related compartment in the abnormal mice. The tumour concentration steadily increased for 4 h after injection, at which time it reached a peak concentration of 11-4% of the injected dose/g. This concentration was higher than the peak concentration for Ga-citrate (not reached until 24 h) or any other oncophilic radiopharmaceutical tested in this tumour model. The early accumulation is consistent with the use of 123I as a tracer label for fibrinogen. A combination of the large tumour concentration of I-fibrinogen, an increased catabolic rate induced by chemical modification, and the exceptional nuclear properties of 123I for scintigraphic imaging, could lead to a very useful radiodiagnostic procedure for cancer

    A practical high current 11 MeV production of high specific activity 89Zr

    Get PDF
    Introduction Zr-89 is a useful radionuclide for radiolabeling proteins and other molecules.1,2 There are many reports of cyclotron production of 89Zr by the 89Y (p,n) reaction. Most irradiations use thin metal backed deposits of Y and irradiation currents up to 100 ”A or thicker amounts of Y or Y2O3 with ~ 20 ”A irradiations.3,4 We are working to develop high specific activity 89Zr using a low energy 11 MeV cyclotron. We have found that target Y metal contains carrier Zr and higher specific activities are achieved with less Y. The goal of this work was to optimize yield while minimizing the amount of Y that was irradiated. Material and Methods All irradiations were done using a Siemens Eclipse 11 MeV proton cyclotron. Y foils were used for the experiments described here. Y2O3 was tried and abandoned due to lower yield and poor heat transfer. Yttrium metal foils from Alfa Aesar, ESPI Metals and Sigma Aldrich, 0.1 to 1 mm in thickness, were tested. Each foil was irradiated for 10 to 15 minutes. The targets to hold the Y foils were made of aluminum and were designed to fit within the “paper burn” unit of the Siemen’s Eclipse target station, allowing the Y target body to be easily inserted and removed from the system. Several Al targets of 2 cm diam. and 7.6 cm long were tested with the face of the targets from 11, 26 or 90o relative to the beam to vary watts cm−2 on the foil. The front of the foils was cooled by He convection and the foil backs by conduction to the Al target body. The target body was cooled by conduction to the water cooled Al sleeve of the target holder. Results and Conclusion The best target was two stacked, 0.25 mm thick, foils to stop beam. 92% of the 89Zr activity was in the front 0.25 mm Y foil. With the greatest slant we could irradiate up to 30 ”A of beam on tar-get. However, the 13×30 mm dimensions of the foil was more mass (0.41 g) and lower specific activity than was desired. Redesign of the target gave a target 90o to the beam with 12×12 mm foils (0.15 g/foil) that were undamaged with up to 30 ”A irradiation when two foils were used. This design has a reduction in beam at the edges of ~10%. With this design, a single Y foil, 0.25 mm thick sustained over 31 ”A of beam and a peak power on target of 270 watts cm−2. The product was radionuclidically pure 89Zr after all 89mZr and small amounts of 13N produced from oxygen at the surface had decayed (TABLE 1). Our conclusion is that the optimum target is a single 0.25 mm thick Y foil to obtain the greatest specific activity at this proton energy. This produces 167 MBq of 89Zr at EOB with a 15 minute and 31 ”A irradiation. We are continuing to redesign the clamp design to reduce losses at the edge of the beam

    A spatiotemporal complexity architecture of human brain activity

    Get PDF

    Curvature in Noncommutative Geometry

    Full text link
    Our understanding of the notion of curvature in a noncommutative setting has progressed substantially in the past ten years. This new episode in noncommutative geometry started when a Gauss-Bonnet theorem was proved by Connes and Tretkoff for a curved noncommutative two torus. Ideas from spectral geometry and heat kernel asymptotic expansions suggest a general way of defining local curvature invariants for noncommutative Riemannian type spaces where the metric structure is encoded by a Dirac type operator. To carry explicit computations however one needs quite intriguing new ideas. We give an account of the most recent developments on the notion of curvature in noncommutative geometry in this paper.Comment: 76 pages, 8 figures, final version, one section on open problems added, and references expanded. Appears in "Advances in Noncommutative Geometry - on the occasion of Alain Connes' 70th birthday

    Biomechanical analysis of temporomandibular joint dynamics based on real-time magnetic resonance imaging

    Get PDF
    Aim: The traditional hinge axis theory of temporomandibular joint (TMJ) dynamics is increasingly being replaced by the theory of instantaneous centers of rotation (ICR). Typically, ICR determinations are based on theoretical calculations or three-dimensional approximations of finite element models. Materials and methods: With the advent of real-time magnetic resonance imaging (MRI), natural physiologic movements of the TMJ may be visualized with 15 frames per second. The present study employs real-time MRI to analyze the TMJ biomechanics of healthy volunteers during mandibular movements, with a special emphasis on horizontal condylar inclination (HCI) and ICR pathways. The Wilcoxon rank sum test was used to comparatively analyze ICR pathways of mandibular opening and closure. Results: Mean HCI was 34.8 degrees (± 11.3 degrees) and mean mandibular rotation was 26.6 degrees (± 7.2 degrees). Within a mandibular motion of 10 to 30 degrees, the resulting x- and y-translation during opening and closure of the mandible differed significantly (10 to 20 degrees, x: P = 0.02 and y: P 30 degrees showed no significant differences in x- and y-translation. Near occlusion movements differed only for y-translation (P < 0.01). Conclusion: Real-time MRI facilitates the direct recording of TMJ structures during physiologic mandibular movements. The present findings support the theory of ICR. Statistics confirmed that opening and closure of the mandible follow different ICR pathways, which might be due to muscular activity discrepancies during different movement directions. ICR pathways were similar within maximum interincisal distance (MID) and near occlusion (NO), which might be explained by limited extensibility of tissue fibers (MID) and tooth contact (NO), respectively

    Optimal jet radius in kinematic dijet reconstruction

    Get PDF
    Obtaining a good momentum reconstruction of a jet is a compromise between taking it large enough to catch the perturbative final-state radiation and small enough to avoid too much contamination from the underlying event and initial-state radiation. In this paper, we compute analytically the optimal jet radius for dijet reconstructions and study its scale dependence. We also compare our results with previous Monte-Carlo studies.Comment: 30 pages, 11 figures; minor corrections; published in JHE

    Asymptotic behaviour of the spectrum of a waveguide with distant perturbations

    Full text link
    We consider the waveguide modelled by a nn-dimensional infinite tube. The operator we study is the Dirichlet Laplacian perturbed by two distant perturbations. The perturbations are described by arbitrary abstract operators ''localized'' in a certain sense, and the distance between their ''supports'' tends to infinity. We study the asymptotic behaviour of the discrete spectrum of such system. The main results are a convergence theorem and the asymptotics expansions for the eigenvalues. The asymptotic behaviour of the associated eigenfunctions is described as well. We also provide some particular examples of the distant perturbations. The examples are the potential, second order differential operator, magnetic Schroedinger operator, curved and deformed waveguide, delta interaction, and integral operator

    Cooling of Molecular Ion Beams

    No full text
    An overview of the use of stored ion beams and phase space cooling (electron cooling) is given for the field of molecular physics. Emphasis is given to interactions between molecular ions and electrons studied in the electron cooler: dissociative recombination and, for internally excited molecular ions, electron-induced ro-vibrational cooling. Diagnostic methods for the transverse ion beam properties and for the internal exciation of the molecular ions are discussed, and results for phase space cooling and internal (vibrational) cooling are presented for hydrogen molecular ions
    • 

    corecore