3,000 research outputs found

    Nonstandard electroconvection in a bent-core oxadiazole material

    Get PDF
    Electroconvection (EC) phenomena have been investigated in the nematic phase of a bent-core oxadiazole material with negative dielectric anisotropy and a frequency dependent conductivity anisotropy. The formation of longitudinal roll (LR) patterns is one of the predominant features observed in the complete frequency and voltage range studied. At voltages much above the LR threshold, various complex patterns such as the "crisscrossed" pattern, bimodal varicose, and turbulence are observed. Unusually, the nonstandard EC (ns-EC) instability in this material, is observed in a regime in which we measure the dielectric and conductivity anisotropies to be negative and positive respectively. A further significant observation is that the EC displays distinct features in the high and low temperature regimes of the nematic phase, supporting an earlier report that EC patterns could distinguish between regions that have been reported as uniaxial and biaxial nematic phases

    Optical Non-Contact Railway Track Measurement with Static Terrestrial Laser Scanning to Better than 1.5mm RMS

    Get PDF
    The railway industry requires track to be monitored for a variety of reasons, particularly when any type of physical works take place within the vicinity of the asset (e.g. demolition, construction and redevelopment works). Terrestrial laser scanning (TLS) has considerable potential as a survey method for rail measurement due to its non-contact nature and independence from physical targeting at track level. The consensus from recently published work using static terrestrial laser scanning is that rail measurements to the order of 3mm RMS are routinely possible. Such measures are appropriate for extracting the gauge, cant and twist parameters required by the rail industry, however engineering specifications designed to ensure safe and comfortable running of the trains ideally require measurements of better quality. This paper utilises standard design rail profiles from the UK industry to optimise the way in which TLS point cloud data are fitted to the rail geometry. The work is based on the use of off the shelf phase-based TLS systems each capable of delivering single point measurements of the order of 5mm to cooperative surfaces. The paper describes a workflow which focuses the fitting process onto discrete planar rail elements derived from the design rail geometry. The planar fitting process is improved through understanding how data from these scanners respond to rail surfaces. Of particular importance is the removal of noisy data from the shiny running surfaces. Results from a sequence of multi-station TLS surveys of the same set of double tracks taken from platform level highlight the capability to obtain fits to the rail model of better than 1.5mm RMS. Whilst fitting can be carried out on a single side of a rail, the paper highlights the challenge of obtaining an accurate TLS registration necessary to extract both sides of each rail to the same level of accuracy. This configuration is proven over inter-TLS instrument separations of the order of 30m and demonstrates the TLS network coverage necessary to achieve such results even in the presence of an occluding electric third rail

    Anomalous increase in nematic-isotropic transition temperature in dimer molecules induced by magnetic field

    Get PDF
    We have determined the nematic-isotropic transition temperature as a function of applied magnetic field in three different thermotropic liquid crystalline dimers. These molecules are comprised of two rigid calamitic moieties joined end to end by flexible spacers with odd numbers of methylene groups. They show an unprecedented magnetic field enhancement of nematic order in that the transition temperature is increased by up to 15K when subjected to 22T magnetic field. The increase is conjectured to be caused by a magnetic field-induced decrease of the average bend angle in the aliphatic spacers connecting the rigid mesogenic units of the dimers

    Massive sulfide Zn deposits in the Proterozoic did not require euxinia

    Get PDF
    Our most important Zn resources occur within clastic-dominated (CD-type) deposits, which are located in a small number of Proterozoic and Phanerozoic sedimentary basins. The most common model for CD-type mineralisation involves sedimentary exhalative (SEDEX) processes, i.e. the venting of metal bearing fluids into a restricted, anoxic H2S-bearing (euxinic) water column. In the Carpentaria Zn Province (Australia), multiple world class deposits are hosted in Proterozoic (1.6 Ga) stratigraphy, where models of the ancient sulfur cycle have also been developed. Focusing on the most recent discovery – the Teena deposit – we report bulk rock and isotopic data (δ34Spyrite values) that provide information on the sulfur cycle during the diagenetic and hydrothermal evolution of the Teena sub-basin. In contrast to the SEDEX model, intervals containing abundant pyrite with highly positive δ34S values (>25 ‰) correspond with euxinic conditions that developed due to high organic loading (i.e. productivity) and not basin restriction. This basin wide feature, which can also be mistaken as a hydrothermal pyrite halo, is genetically unrelated to the subsequent hydrothermal mineralisation that formed beneath the palaeo-seafloor. The formation of CD-type deposits in the Proterozoic does not, therefore, require euxinic conditions

    Governing the governors : a case study of college governance in English further education

    Get PDF
    This paper addresses the nature of governors in the governance of further education colleges in an English context (1). It explores the complex relationship between governors (people/agency), government (policy/structure) and governance (practice), in a college environment. While recent research has focused on the governance of schooling and higher education there has been little attention paid to the role of governors in the lifelong learning sector. The objective of the paper is to contribute to the debate about the purpose of college governance at a time when the Learning and Skills Council (LSC) commissioning era ends, and new government bodies responsible for further education and training, including local authorities, arrive. The paper analyses the nature of FE governance through the perspectives and experiences of governors, as colleges respond to calls from government for greater improvement and accountability in the sector (LSIS, 2009a). What constitutes creative governance is complex and controversial in the wider framework of regulation and public policy reform (Stoker, 1997; Seddon, 2008). As with other tricky concepts such as leadership, professionalism and learning, college governance is best defined in the contexts, cultures and situations in which it is located. College governance does not operate in a vacuum. It involves governors, chairs, principals, professionals, senior managers, clerks, community, business and wider agencies, including external audit and inspection regimes. Governance also acts as a prism through which national education and training reforms are mediated, at local level. While governing bodies are traditionally associated with the business of FE - steering, setting the tone and style, dealing with finance, funding, audit and procedural matters – they are increasingly being challenged to be more creative and responsive to the wider society. Drawing on a recent case study of six colleges, involving governors and key policy stakeholders, this paper explores FE governance in a fast changing policy environment

    Second harmonic light scattering induced by defects in the twist-bend nematic phase of liquid crystal dimers

    Get PDF
    The nematic twist-bend (NTB) phase, exhibited by certain thermotropic liquid crystalline (LC) dimers, represents a new orientationally ordered mesophase -- the first distinct nematic variant discovered in many years. The NTB phase is distinguished by a heliconical winding of the average molecular long axis (director) with a remarkably short (nanoscale) pitch and, in systems of achiral dimers, with an equal probability to form right- and left-handed domains. The NTB structure thus provides another fascinating example of spontaneous chiral symmetry breaking in nature. The order parameter driving the formation of the heliconical state has been theoretically conjectured to be a polarization field, deriving from the bent conformation of the dimers, that rotates helically with the same nanoscale pitch as the director field. It therefore presents a significant challenge for experimental detection. Here we report a second harmonic light scattering (SHLS) study on two achiral, NTB-forming LCs, which is sensitive to the polarization field due to micron-scale distortion of the helical structure associated with naturally-occurring textural defects. These defects are parabolic focal conics of smectic-like ``pseudo-layers", defined by planes of equivalent phase in a coarse-grained description of the NTB state. Our SHLS data are explained by a coarse-grained free energy density that combines a Landau-deGennes expansion of the polarization field, the elastic energy of a nematic, and a linear coupling between the two

    Light scattering study of the “pseudo-layer” compression elastic constant in a twist-bend nematic liquid crystal

    Get PDF
    The nematic twist-bend (TB) phase, exhibited by certain achiral thermotropic liquid crystalline (LC) dimers, features a nanometer-scale, heliconical rotation of the average molecular long axis (director) with equally probable left- and right-handed domains. On meso to macroscopic scales, the TB phase may be considered as a stack of equivalent slabs or “pseudo-layers”, each one helical pitch in thickness. The long wavelength fluctuation modes should then be analogous to those of a smectic-A phase, and in particular the hydrodynamic mode combining “layer” compression and bending ought to be characterized by an effective layer compression elastic constant Beff and average director splay constant Keff1. The magnitude of Keff1 is expected to be similar to the splay constant of an ordinary nematic LC, but due to the absence of a true mass density wave, Beff could differ substantially from the typical value of ∼10⁶ Pa in a conventional smectic-A. Here we report the results of a dynamic light scattering study, which confirms the “pseudo-layer” structure of the TB phase with Beff in the range 10³–10⁴ Pa. We show additionally that the temperature dependence of Beff at the TB to nematic transition is accurately described by a coarse-grained free energy density, which is based on a Landau-deGennes expansion in terms of a heli-polar order parameter that characterizes the TB state and is linearly coupled to bend distortion of the director

    Structural monitoring for the rail industry using conventional survey, laser scanning and photogrammetry

    Get PDF
    Monitoring the movement of structures on railway projects in the UK typically involves the fixing of targets (e.g. prisms) or sensors onto the structures being monitored and their surroundings. Whilst this provides discrete point measurement capability across the structure, it is highly intrusive and expensive to setup in a railway environment. Terrestrial laser scanning (TLS) has become an invaluable method of data capture within the surveying industry including applications such as deformation monitoring. The main advantages of TLS, as opposed to other surveying techniques, are the ability to capture large volumes of 3D data at high speed, remotely and with a reasonably high accuracy. A complimentary technique, close-range photogrammetry (CRP), has been traditionally applied to structural monitoring, but is not routinely considered by the railway monitoring community. This technique has the advantage of rapid data capture from a mobile camera with the capability to monitor single points or to generate a point cloud, with an equipment cost approximately twenty times cheaper than a TLS system and at about one tenth the cost of a single instrument total station approach. This paper describes the application of TLS and CRP, along with conventional survey techniques, to the monitoring of a set of masonry arches during a major station refurbishment. Firstly, it investigates the capabilities of using TLS compared to traditional survey methods and encompasses a case where significant movements occur over an extended period of time. Inter-epoch comparison demonstrates a capability to detect change but highlights a requirement to understand the structure and data quality in making valid interpretations. Secondly, the paper compares TLS and CRP techniques as monitoring tools for creating point cloud data on the same set of masonry arches. These investigations generate significant volumes of data conferring the additional challenge of how to visualise observed changes and communicate those changes and their significance to the engineers who must make informed decisions from the data in a timely fashion
    corecore