57 research outputs found

    MOTIFATOR: detection and characterization of regulatory motifs using prokaryote transcriptome data

    Get PDF
    Summary: Unraveling regulatory mechanisms (e.g. identification of motifs in cis-regulatory regions) remains a major challenge in the analysis of transcriptome experiments. Existing applications identify putative motifs from gene lists obtained at rather arbitrary cutoff and require additional manual processing steps. Our standalone application MOTIFATOR identifies the most optimal parameters for motif discovery and creates an interactive visualization of the results. Discovered putative motifs are functionally characterized, thereby providing valuable insight in the biological processes that could be controlled by the motif.

    PanCGHweb: a web tool for genotype calling in pangenome CGH data

    Get PDF
    Summary: A pangenome is the total of genes present in strains of the same species. Pangenome microarrays allow determining the genomic content of bacterial strains more accurately than conventional comparative genome hybridization microarrays. PanCGHweb is the first tool that effectively calls genotype based on pangenome microarray data

    SpotXplore: a Cytoscape plugin for visual exploration of hotspot expression in gene regulatory networks

    Get PDF
    Summary: SpotXplore is a plugin for Cytoscape for extraction and visualization of differentially expressed subnetworks (hotspots) from gene networks. The hotspot-based visualization approach enables interactive exploration of regulatory interactions in differentially expressed gene sets, and it allows a researcher to explore gene expression in direct relation to the affected cellular gene network. The hotspots provide a view beyond the commonly used metabolic pathways and gene ontologies

    FIVA:Functional Information Viewer and Analyzer extracting biological knowledge from transcriptome data of prokaryotes

    Get PDF
    FIVA (Function Information Viewer and Analyzer) aids researchers in the prokaryotic community to quickly identify relevant biological processes following transcriptome analysis. Our software assists in functional profiling of large sets of genes and generates a comprehensive overview of affected biological processes.

    Phage-derived protein induces increased platelet activation and is associated with mortality in patients with invasive pneumococcal disease

    Get PDF
    To improve our understanding about the severity of invasive pneumococcal disease (IPD), we investigated the association between the genotype of Streptococcus pneumoniae and disease outcomes for 349 bacteremic patients. A pneumococcal genome-wide association study (GWAS) demonstrated a strong correlation between 30-day mortality and the presence of the phage-derived gene pblB, encoding a platelet-binding protein whose effects on platelet activation were previously unknown. Platelets are increasingly recognized as key players of the innate immune system, and in sepsis, excessive platelet activation contributes to microvascular obstruction, tissue hypoperfusion, and finally multiorgan failure, leading to mortality. Our in vitro studies revealed that pblB expression was induced by fluoroquinolones but not by the beta-lactam antibiotic penicillin G. Subsequently, we determined pblB induction and platelet activation by incubating whole blood with the wild type or a pblB knockout mutant in the presence or absence of antibiotics commonly administered to our patient cohort. pblB-dependent enhancement of platelet activation, as measured by increased expression of the ɑ-granule protein P-selectin, the binding of fibrinogen to the activated ɑ IIbβ3 receptor, and the formation of platelet-monocyte complex occurred irrespective of antibiotic exposure. In conclusion, the presence of pblB on the pneumococcal chromosome potentially leads to increased mortality in patients with an invasive S. pneumoniae infection, which may be explained by enhanced platelet activation. This study highlights the clinical utility of a bacterial GWAS, followed by functional characterization, to identify bacterial factors involved in disease severity. IMPORTANCE The exact mechanisms causing mortality in invasive pneumococcal disease (IPD) patients are not completely understood. We examined 349 patients with IPD and found in a bacterial genome-wide association study (GWAS) that the presence of the phage-derived gene pblB was associated with mortality in the first 30 days after hospitalization. Although pblB has been extensively studied in Streptococcus mitis, its consequence for the interaction between platelets and Streptococcus pneumoniae is largely unknown. Platelets are important in immunity and inflammation, and excessive platelet activation contributes to microvascular obstruction and multiorgan failure, leading to mortality. We therefore developed this study to assess whether the expression of pblB might increase the risk of death for IPD patients through its effect on enhanced platelet activation. This study also shows the value of integrating extensive bacterial genomics and clinical data in predicting and understanding pathogen virulence, which in turn will help to improve prognosis and therapy

    The Response of Lactococcus lactis to Membrane Protein Production

    Get PDF
    Background: The biogenesis of membrane proteins is more complex than that of water-soluble proteins, and recombinant expression of membrane proteins in functional form and in amounts high enough for structural and functional studies is often problematic. To better engineer cells towards efficient protein production, we set out to understand and compare the cellular consequences of the overproduction of both classes of proteins in Lactococcus lactis, employing a combined proteomics and transcriptomics approach. Methodology and Findings: Highly overproduced and poorly expressed membrane proteins both resulted in severe growth defects, whereas amplified levels of a soluble substrate receptor had no effect. In addition, membrane protein overproduction evoked a general stress response (upregulation of various chaperones and proteases), which is probably due to accumulation of misfolded protein. Notably, upon the expression of membrane proteins a cell envelope stress response, controlled by the two-component regulatory CesSR system, was observed. Conclusions: The physiological response of L. lactis to the overproduction of several membrane proteins was determined and compared to that of a soluble protein, thus offering better understanding of the bottlenecks related to membrane protein production and valuable knowledge for subsequent strain engineering.

    An overview of the recent developments on fructooligosaccharide production and applications

    Get PDF
    Over the past years, many researchers have suggested that deficiencies in the diet can lead to disease states and that some diseases can be avoided through an adequate intake of relevant dietary components. Recently, a great interest in dietary modulation of the human gut has been registered. Prebiotics, such as fructooligosaccharides (FOS), play a key role in the improvement of gut microbiota balance and in individual health. FOS are generally used as components of functional foods, are generally regarded as safe (generally recognized as safe status—from the Food and Drug Administration, USA), and worth about 150€ per kilogram. Due to their nutrition- and health-relevant properties, such as moderate sweetness, low carcinogenicity, low calorimetric value, and low glycemic index, FOS have been increasingly used by the food industry. Conventionally, FOS are produced through a two-stage process that requires an enzyme production and purification step in order to proceed with the chemical reaction itself. Several studies have been conducted on the production of FOS, aiming its optimization toward the development of more efficient production processes and their potential as food ingredients. The improvement of FOS yield and productivity can be achieved by the use of different fermentative methods and different microbial sources of FOS producing enzymes and the optimization of nutritional and culture parameter; therefore, this review focuses on the latest progresses in FOS research such as its production, functional properties, and market data.Agencia de Inovacao (AdI)-Project BIOLIFE reference PRIME 03/347. Ana Dominguez acknowledges Fundacao para a Ciencia e a Tecnologia, Portugal, for her PhD grant reference SFRH/BD/23083/2005

    Natural environments, ancestral diets, and microbial ecology: is there a modern “paleo-deficit disorder”? Part II

    Get PDF

    Genome-wide prediction and validation of sigma70 promoters in Lactobacillus plantarum WCFS1

    Get PDF
    Contains fulltext : 108029.pdf (publisher's version ) (Open Access)BACKGROUND: In prokaryotes, sigma factors are essential for directing the transcription machinery towards promoters. Various sigma factors have been described that recognize, and bind to specific DNA sequence motifs in promoter sequences. The canonical sigma factor sigma(70) is commonly involved in transcription of the cell's housekeeping genes, which is mediated by the conserved sigma(70) promoter sequence motifs. In this study the sigma(70)-promoter sequences in Lactobacillus plantarum WCFS1 were predicted using a genome-wide analysis. The accuracy of the transcriptionally-active part of this promoter prediction was subsequently evaluated by correlating locations of predicted promoters with transcription start sites inferred from the 5'-ends of transcripts detected by high-resolution tiling array transcriptome datasets. RESULTS: To identify sigma(70)-related promoter sequences, we performed a genome-wide sequence motif scan of the L. plantarum WCFS1 genome focussing on the regions upstream of protein-encoding genes. We obtained several highly conserved motifs including those resembling the conserved sigma(70)-promoter consensus. Position weight matrices-based models of the recovered sigma(70)-promoter sequence motif were employed to identify 3874 motifs with significant similarity (p-value<10(-4)) to the model-motif in the L. plantarum genome. Genome-wide transcript information deduced from whole genome tiling-array transcriptome datasets, was used to infer transcription start sites (TSSs) from the 5'-end of transcripts. By this procedure, 1167 putative TSSs were identified that were used to corroborate the transcriptionally active fraction of these predicted promoters. In total, 568 predicted promoters were found in proximity (</= 40 nucleotides) of the putative TSSs, showing a highly significant co-occurrence of predicted promoter and TSS (p-value<10(-263)). CONCLUSIONS: High-resolution tiling arrays provide a suitable source to infer TSSs at a genome-wide level, and allow experimental verification of in silico predicted promoter sequence motifs

    Visualizing genome expression and regulatory network dynamics in genomic and metabolic context. Computer Graphics Forum

    No full text
    Abstract DNA microarrays are used to measure the expression levels of thousands of genes simultaneously. In a time series experiment, the gene expressions are measured as a function of time. We present an application for integrated visualization of genome expression and network dynamics in both regulatory networks and metabolic pathways. Integration of these two levels of cellular processes is necessary, since it provides the link between the measurements at the transcriptional level (gene expression levels approximated from microarray data) and the phenotype (the observable characteristics of an organism) at the functional and behavioral level. The integration requires visualization approaches besides traditional clustering and statistical analysis methods. Our application can (i) visualize the data from time series experiments in the context of a regulatory network and KEGG metabolic pathways; (ii) identify and visualize active regulatory subnetworks from the gene expression data; (iii) perform a statistical test to identify and subsequently visualize pathways that are affected by differentially expressed genes. We present a case study, which demonstrates that our approach and application both facilitates and speeds up data analysis tremendously in comparison to a more traditional approach that involves many manual, laborious, and error-prone steps
    corecore