1,139 research outputs found

    Identification of mixed-symmetry states in an odd-mass nearly-spherical nucleus

    Get PDF
    The low-spin structure of 93Nb has been studied using the (n,n' gamma) reaction at neutron energies ranging from 1.5 to 3.0 MeV and the 94Zr(p,2n gamma)93Nb reaction at bombarding energies from 11.5 to 19 MeV. States at 1779.7 and 1840.6 keV, respectively, are proposed as mixed-symmetry states associated with the coupling of a proton hole in the p_1/2 orbit to the 2+_1,ms state in 94Mo. These assignments are derived from the observed M1 and E2 transition strengths to the symmetric one-phonon states, energy systematics, spins and parities, and comparison with shell model calculations.Comment: 5 pages, 3 figure

    Observation of isotonic symmetry for enhanced quadrupole collectivity in neutron-rich 62,64,66Fe isotopes at N=40

    Full text link
    The transition rates for the 2_{1}^{+} states in 62,64,66Fe were studied using the Recoil Distance Doppler-Shift technique applied to projectile Coulomb excitation reactions. The deduced E2 strengths illustrate the enhanced collectivity of the neutron-rich Fe isotopes up to N=40. The results are interpreted by the generalized concept of valence proton symmetry which describes the evolution of nuclear structure around N=40 as governed by the number of valence protons with respect to Z~30. The deformation suggested by the experimental data is reproduced by state-of-the-art shell calculations with a new effective interaction developed for the fpgd valence space.Comment: 4 pages, 2 figure

    Transition probabilities in the X(5) candidate 122^{122}Ba

    Full text link
    To investigate the possible X(5) character of 122Ba, suggested by the ground state band energy pattern, the lifetimes of the lowest yrast states of 122Ba have been measured, via the Recoil Distance Doppler-Shift method. The relevant levels have been populated by using the 108Cd(16O,2n)122Ba and the 112Sn(13C,3n)122Ba reactions. The B(E2) values deduced in the present work are compared to the predictions of the X(5) model and to calculations performed in the framework of the IBA-1 and IBA-2 models

    Search for the electric dipole excitations to the 3s1/2[21+31]3s_{1/2} \otimes [2^{+}_{1} \otimes 3^{-}_{1}] multiplet in 117^{117}Sn

    Full text link
    The odd-mass 117^{117}Sn nucleus was investigated in nuclear resonance fluorescence experiments up to an endpoint energy of the incident photon spectrum of 4.1 MeV at the bremsstrahlung facility of the Stuttgart University. More than 50 mainly hitherto unknown levels were found. From the measurement of the scattering cross sections model independent absolute electric dipole excitation strengths were extracted. The measured angular distributions suggested the spins of 11 excited levels. Quasi-particle phonon model calculations including a complete configuration space were performed for the first time for a heavy odd-mass spherical nucleus. These calculations give a clear insight in the fragmentation and distribution of the E1E1, M1M1, and E2E2 excitation strength in the low energy region. It is proven that the 11^{-} component of the two-phonon [21+31][2^{+}_{1} \otimes 3^{-}_{1}] quintuplet built on top of the 1/2+1/2^{+} ground state is strongly fragmented. The theoretical calculations are consistent with the experimental data.Comment: 10 pages, 5 figure

    Lifetime determination of excited states in Cd-106

    Get PDF
    Two separate experiments using the Differential Decay Curve Method have been performed to extract mean lifetimes of excited states in 106 Cd. The inedium-spin states of interest were populated by the Mo-98(C-12, 4n) Cd-106 reaction performed at the Wright Nuclear Structure Lab., Yale University. From this experiment, two isomeric state mean lifetimes have been deduced. The low-lying states were populated by the Mo-96(C-13, 3n)Cd-106 reaction performed at the Institut fur Kernphysik, Universitat zu Koln. The mean lifetime of the I-pi = 2(1)(+) state was deduced, tentatively, as 16.4(9) ps. This value differs from the previously accepted literature value from Coulomb excitation of 10.43(9) ps

    Multi-particle effects in non-equilibrium electron tunnelling and field emission

    Full text link
    We investigate energy resolved electric current from various correlated host materials under out-of-equilibrium conditions. We find that, due to a combined effect of electron-electron interactions, non-equilibrium and multi-particle tunnelling, the energy resolved current is finite even above the Fermi edge of the host material. In most cases, the current density possesses a singularity at the Fermi level revealing novel manifestations of correlation effects in electron tunnelling. By means of the Keldysh non-equilibrium technique, the current density is calculated for one-dimensional interacting electron systems and for two-dimensional systems, both in the pure limit and in the presence of disorder. We then specialise to the field emission and provide a comprehensive theoretical study of this effect in carbon nanotubes.Comment: 22 pages, 8 figures (eps files

    Transition Rates between Mixed Symmetry States: First Measurement in 94Mo

    Full text link
    The nucleus 94Mo was investigated using a powerful combination of gamma-singles photon scattering experiments and gamma-gamma-coincidence studies following the beta-decay of 94mTc. The data survey short-lived J^pi=1+,2+ states and include branching ratios, E2/M1 mixing ratios, lifetimes, and transition strengths. The mixed-symmetry (MS) 1+ scissors mode and the 2+ MS state are identified from M1 strengths. A gamma transition between MS states was observed and its rate was measured. Nine M1 and E2 strengths involving MS states agree with the O(6) limit of the interacting boson model-2 using the proton boson E2 charge as the only free parameter.Comment: 9 pages, 3 PostScript figures included, ReVTeX, accepted for publication in Physical Review Letters, tentatively scheduled for August 9, 199

    Extended M1 sum rule for excited symmetric and mixed-symmetry states in nuclei

    Get PDF
    A generalized M1 sum rule for orbital magnetic dipole strength from excited symmetric states to mixed-symmetry states is considered within the proton-neutron interacting boson model of even-even nuclei. Analytic expressions for the dominant terms in the B(M1) transition rates from the first and second 2+2^+ states are derived in the U(5) and SO(6) dynamic symmetry limits of the model, and the applicability of a sum rule approach is examined at and in-between these limits. Lastly, the sum rule is applied to the new data on mixed-symmetry states of 94Mo and a quadrupole d-boson ratio nd(01+)/nd(22+)0.6nd(0^+_1)/nd(2^+_2) \approx 0.6 is obtained in a largely parameter-independent wayComment: 19 pages, 3 figures, Revte
    corecore