928 research outputs found
Could the Pioneer anomaly have a gravitational origin?
If the Pioneer anomaly has a gravitational origin, it would, according to the
equivalence principle, distort the motions of the planets in the Solar System.
Since no anomalous motion of the planets has been detected, it is generally
believed that the Pioneer anomaly can not originate from a gravitational source
in the Solar System. However, this conclusion becomes less obvious when
considering models that either imply modifications to gravity at long range or
gravitational sources localized to the outer Solar System, given the
uncertainty in the orbital parameters of the outer planets. Following the
general assumption that the Pioneer spacecraft move geodesically in a
spherically symmetric spacetime metric, we derive the metric disturbance that
is needed in order to account for the Pioneer anomaly. We then analyze the
residual effects on the astronomical observables of the three outer planets
that would arise from this metric disturbance, given an arbitrary metric theory
of gravity. Providing a method for comparing the computed residuals with actual
residuals, our results imply that the presence of a perturbation to the
gravitational field necessary to induce the Pioneer anomaly is in conflict with
available data for the planets Uranus and Pluto, but not for Neptune. We
therefore conclude that the motion of the Pioneer spacecraft must be
non-geodesic. Since our results are model independent within the class of
metric theories of gravity, they can be applied to rule out any model of the
Pioneer anomaly that implies that the Pioneer spacecraft move geodesically in a
perturbed spacetime metric, regardless of the origin of this metric
disturbance.Comment: 16 pages, 6 figures. Rev. 3: Major revision. Accepted for publication
in Phys. Rev. D. Rev. 4: Added two reference
Zeldovich flow on cosmic vacuum background: new exact nonlinear analytical solution
A new exact nonlinear Newtonian solution for a plane matter flow superimposed
on the isotropic Hubble expansion is reported. The dynamical effect of cosmic
vacuum is taken into account. The solution describes the evolution of nonlinear
perturbations via gravitational instability of matter and the termination of
the perturbation growth by anti-gravity of vacuum at the epoch of transition
from matter domination to vacuum domination. On this basis, an `approximate' 3D
solution is suggested as an analog of the Zeldovich ansatz.Comment: 9 pages, 1 figure
Metric of a tidally perturbed spinning black hole
We explicitly construct the metric of a Kerr black hole that is tidally
perturbed by the external universe in the slow-motion approximation. This
approximation assumes that the external universe changes slowly relative to the
rotation rate of the hole, thus allowing the parameterization of the
Newman-Penrose scalar by time-dependent electric and magnetic tidal
tensors. This approximation, however, does not constrain how big the spin of
the background hole can be and, in principle, the perturbed metric can model
rapidly spinning holes. We first generate a potential by acting with a
differential operator on . From this potential we arrive at the metric
perturbation by use of the Chrzanowski procedure in the ingoing radiation
gauge. We provide explicit analytic formulae for this metric perturbation in
spherical Kerr-Schild coordinates, where the perturbation is finite at the
horizon. This perturbation is parametrized by the mass and Kerr spin parameter
of the background hole together with the electric and magnetic tidal tensors
that describe the time evolution of the perturbation produced by the external
universe. In order to take the metric accurate far away from the hole, these
tidal tensors should be determined by asymptotically matching this metric to
another one valid far from the hole. The tidally perturbed metric constructed
here could be useful in initial data constructions to describe the metric near
the horizons of a binary system of spinning holes. This perturbed metric could
also be used to construct waveforms and study the absorption of mass and
angular momentum by a Kerr black hole when external processes generate
gravitational radiation.Comment: 17 pages, 3 figures. Final PRD version, minor typos, etc corrected.
v3: corrected typo in Eq. (35) and (57
Self Interacting Dark Matter in the Solar System
Weakly coupled, almost massless, spin 0 particles have been predicted by many
extensions of the standard model of particle physics. Recently, the PVLAS group
observed a rotation of polarization of electromagnetic waves in vacuum in the
presence of transverse magnetic field. This phenomenon is best explained by the
existence of a weakly coupled light pseudoscalar particle. However, the
coupling required by this experiment is much larger than the conventional
astrophysical limits. Here we consider a hypothetical self-interacting
pseudoscalar particle which couples weakly with visible matter.
Assuming that these pseudoscalars pervade the galaxy, we show that the solar
limits on the pseudoscalar-photon coupling can be evaded.Comment: 17 pages, 2 figure
Gravitational collapse in asymptotically Anti-de Sitter/de Sitter backgrounds
We study here the gravitational collapse of a matter cloud with a
non-vanishing tangential pressure in the presence of a non-zero cosmological
term. Conditions for bounce and singularity formation are derived for the
model. It is also shown that when the tangential pressures vanish, the bounce
and singularity conditions reduce to that of the dust case studied earlier. The
collapsing interior is matched with an exterior which is asymptotically de
Sitter or anti de Sitter, depending on the sign of cosmological constant. The
junction conditions for matching the cloud to exterior are specified. The
effect of the cosmological term on apparent horizons is studied in some detail,
and the nature of central singularity is analyzed. We also discuss here the
visibility of the singularity and implications for the cosmic censorship
conjecture.Comment: 11 pages, 1 figure, Revtex
Exploring the vicinity of the Bogomol'nyi-Prasad-Sommerfield bound
We investigate systems of real scalar fields in bidimensional spacetime,
dealing with potentials that are small modifications of potentials that admit
supersymmetric extensions. The modifications are controlled by a real
parameter, which allows implementing a perturbation procedure when such
parameter is small. The approach allows obtaining the energy and topological
charge in closed forms, up to first order in the parameter. We illustrate the
procedure with some examples. In particular, we show how to remove the
degeneracy in energy for the one-field and the two-field solutions that appear
in a model of two real scalar fields.Comment: Revtex, 9 pages, To be published in J. Phys.
The optical system of the H.E.S.S. imaging atmospheric Cherenkov telescopes, Part II: mirror alignment and point spread function
Mirror facets of the H.E.S.S. imaging atmospheric Cherenkov telescopes are
aligned using stars imaged onto the closed lid of the PMT camera, viewed by a
CCD camera. The alignment procedure works reliably and includes the automatic
analysis of CCD images and control of the facet alignment actuators. On-axis,
80% of the reflected light is contained in a circle of less than 1 mrad
diameter. The spot widens with increasing angle to the telescope axis. In
accordance with simulations, the spot size has roughly doubled at an angle of
1.4 degr. from the axis. The expected variation of spot size with elevation due
to deformations of the support structure is visible, but is completely
non-critical over the usual working range. Overall, the optical quality of the
telescope exceeds the specifications.Comment: 23 pages, 13 figure
Dynamical Lorentz simmetry breaking from 3+1 Axion-Wess-Zumino model
We study the renormalizable abelian vector-field models in the presence of
the Wess-Zumino interaction with the pseudoscalar matter. The renormalizability
is achieved by supplementing the standard kinetic term of vector fields with
higher derivatives. The appearance of fourth power of momentum in the
vector-field propagator leads to the super-renormalizable theory in which the
-function, the vector-field renormalization constant and the anomalous
mass dimension are calculated exactly. It is shown that this model has the
infrared stable fixed point and its low-energy limit is non-trivial. The
modified effective potential for the pseudoscalar matter leads to the possible
occurrence of dynamical breaking of the Lorentz symmetry. This phenomenon is
related to the modification of Electrodynamics by means of the Chern-Simons
(CS) interaction polarized along a constant CS vector. Its presence makes the
vacuum optically active that has been recently estimated from astrophysical
data. We examine two possibilities for the CS vector to be time-like or
space-like, under the assumption that it originates from v.e.v. of some
pseudoscalar matter and show that only the latter one is consistent in the
framework of the AWZ model, because a time-like CS vector makes the vacuum
unstable under pairs creation of tachyonic photon modes with the finite vacuum
decay rate.Comment: 33 pages, no Figures, Plain TeX, submitted to Phys. Rev.
Effective Values of Komar Conserved Quantities and Their Applications
We calculate the effective Komar angular momentum for the Kerr-Newman (KN)
black hole. This result is valid at any radial distance on and outside the
black hole event horizon. The effcetive values of mass and angular momentum are
then used to derive an identity () which relates the Komar
conserved charge () corresponding to the null Killing vector
() with the thermodynamic quantities of this black hole. As an
application of this identity the generalised Smarr formula for this black hole
is derived. This establishes the fact that the above identity is a local form
of the inherently non-local generalised Smarr formula.Comment: v3, minor modifications over v2; LaTex, 9 pages, no figures, to
appear in Int. Jour. Theo. Phy
de Sitter special relativity
A special relativity based on the de Sitter group is introduced, which is the
theory that might hold up in the presence of a non-vanishing cosmological
constant. Like ordinary special relativity, it retains the quotient character
of spacetime, and a notion of homogeneity. As a consequence, the underlying
spacetime will be a de Sitter spacetime, whose associated kinematics will
differ from that of ordinary special relativity. The corresponding modified
notions of energy and momentum are obtained, and the exact relationship between
them, which is invariant under a re-scaling of the involved quantities,
explicitly exhibited. Since the de Sitter group can be considered a particular
deformation of the Poincar\'e group, this theory turns out to be a specific
kind of deformed (or doubly) special relativity. Some experimental
consequences, as well as the causal structure of spacetime--modified by the
presence of the de Sitter horizon--are briefly discussed.Comment: V2: Some presentation changes; a new section introduced, with a
discussion about possible phenomenological consequences; new references
added; version to be published in Classical and Quantum Gravit
- …