1,180 research outputs found

    ARPES on HTSC: simplicity vs. complexity

    Full text link
    A notable role in understanding of microscopic electronic properties of high temperature superconductors (HTSC) belongs to angle resolved photoemission spectroscopy (ARPES). This technique supplies a direct window into reciprocal space of solids: the momentum-energy space where quasiparticles (the electrons dressed in clouds of interactions) dwell. Any interaction in the electronic system, e.g. superconducting pairing, leads to modification of the quasi-particle spectrum--to redistribution of the spectral weight over the momentum-energy space probed by ARPES. A continued development of the technique had an effect that the picture seen through the ARPES window became clearer and sharper until the complexity of the electronic band structure of the cuprates had been resolved. Now, in an optimal for superconductivity doping range, the cuprates much resemble a normal metal with well predicted electronic structure, though with rather strong electron-electron interaction. This principal disentanglement of the complex physics from complex structure reduced the mystery of HTSC to a tangible problem of interaction responsible for quasi-particle formation. Here we present a short overview of resent ARPES results, which, we believe, denote a way to resolve the HTSC puzzle.Comment: A review written for a special issue of FN

    Fermi pockets and correlation effects in underdoped YBa2Cu3O6.5

    Full text link
    The detection of quantum oscillations in the electrical resistivity of YBa2Cu3O6.5 provides direct evidence for the existence of Fermi surface pockets in an underdoped cuprate. We present a theoretical study of the electronic structure of YBa2Cu3O7-d (YBCO) aiming at establishing the nature of these Fermi pockets, i.e. CuO2 plane versus CuO chain or BaO. We argue that electron correlation effects, such as orbital-dependent band distortions and highly anisotropic self-energy corrections, must be taken into account in order to properly interpret the quantum oscillation experiments.Comment: A high-resolution version can be found at http://www.physics.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/YBCO_OrthoII_LDA.pd

    Bare electron dispersion from photoemission experiments

    Full text link
    Performing an in-depth analysis of the photoemission spectra along the nodal direction of the high temperature superconductor Bi-2212 we have developed a procedure to determine the underlying electronic structure and established a precise relation of the measured quantities to the real and imaginary parts of the self-energy of electronic excitations. The self-consistency of the procedure with respect to the Kramers-Kronig transformation allows us to draw conclusions on the applicability of the spectral function analysis and on the existence of well defined quasiparticles along the nodal direction even for the underdoped Bi-2212 in the pseudogap state.Comment: 4 pages 3 figures revtex, corrected misprint

    Destroying coherence in high temperature superconductors with current flow

    Full text link
    The loss of single-particle coherence going from the superconducting state to the normal state in underdoped cuprates is a dramatic effect that has yet to be understood. Here, we address this issue by performing angle resolved photoemission spectroscopy (ARPES) measurements in the presence of a transport current. We find that the loss of coherence is associated with the development of an onset in the resistance, in that well before the midpoint of the transition is reached, the sharp peaks in the ARPES spectra are completely suppressed. Since the resistance onset is a signature of phase fluctuations, this implies that the loss of single-particle coherence is connected with the loss of long-range phase coherence.Comment: 7 pages, 7 figure

    The change of Fermi surface topology in Bi2Sr2CaCu2O8 with doping

    Get PDF
    We report the observation of a change in Fermi surface topology of Bi2Sr2CaCu2O8 with doping. By collecting high statistics ARPES data from moderately and highly overdoped samples and dividing the data by the Fermi function, we answer a long standing question about the Fermi surface shape of Bi2Sr2CaCu2O8 close to the (pi,0) point. For moderately overdoped samples (Tc=80K) we find that both the bonding and antibonding sheets of the Fermi surface are hole-like. However for a doping level corresponding to Tc=55K we find that the antibonding sheet becomes electron-like. This change does not directly affect the critical temperature and therefore the superconductivity. However, since similar observations of the change of the topology of the Fermi surface were observed in LSCO and Bi2Sr2Cu2O6, it appears to be a generic feature of hole-doped superconductors. Because of bilayer splitting, though, this doping value is considerably lower than that for the single layer materials, which again argues that it is unrelated to Tc

    The coherent {\it d}-wave superconducting gap in underdoped La2x_{2-x}Srx_{x}CuO4_4 as studied by angle-resolved photoemission

    Full text link
    We present angle-resolved photoemission spectroscopy (ARPES) data on moderately underdoped La1.855_{1.855}Sr0.145_{0.145}CuO4_4 at temperatures below and above the superconducting transition temperature. Unlike previous studies of this material, we observe sharp spectral peaks along the entire underlying Fermi surface in the superconducting state. These peaks trace out an energy gap that follows a simple {\it d}-wave form, with a maximum superconducting gap of 14 meV. Our results are consistent with a single gap picture for the cuprates. Furthermore our data on the even more underdoped sample La1.895_{1.895}Sr0.105_{0.105}CuO4_4 also show sharp spectral peaks, even at the antinode, with a maximum superconducting gap of 26 meV.Comment: Accepted by Phys. Rev. Let

    Protected nodes and the collapse of the Fermi arcs in high Tc cuprates

    Get PDF
    Angle resolved photoemission on underdoped Bi2Sr2CaCu2O8 reveals that the magnitude and d-wave anisotropy of the superconducting state energy gap are independent of temperature all the way up to Tc. This lack of T variation of the entire k-dependent gap is in marked contrast to mean field theory. At Tc the point nodes of the d-wave gap abruptly expand into finite length ``Fermi arcs''. This change occurs within the width of the resistive transition, and thus the Fermi arcs are not simply thermally broadened nodes but rather a unique signature of the pseudogap phase.Comment: Accepted by Phys. Rev. Let

    Tachyon warm inflationary universe models

    Get PDF
    Warm inflationary universe models in a tachyon field theory are studied. General conditions required for these models to be realizable are derived and discussed. We describe scalar perturbations (in the longitudinal gauge) and tensor perturbations for these scenarios. We develop our models for a constant dissipation parameter Γ\Gamma in one case and one dependent on ϕ\phi in the other case. We have been successful in describing such of inflationary universe models. We use recent astronomical observations for constraining the parameters appearing in our model. Also, our results are compared with their analogous found in the cool inflationary case.Comment: 21 pages, Accepted by JCA

    Evolution of the Fermi surface with carrier concentration in Bi_2Sr_2CaCu_2O_{8+\delta}

    Get PDF
    We show, by use of angle-resolved photoemission spectroscopy, that underdoped Bi_2Sr_2CaCu_2O_{8+\delta} appears to have a large Fermi surface centered at (\pi,\pi), even for samples with a T_c as low as 15 K. No clear evidence of a Fermi surface pocket around (\pi/2,\pi/2) has been found. These conclusions are based on a determination of the minimum gap locus in the pseudogap regime T_c < T < T^*, which is found to coincide with the locus of gapless excitations in momentum space (Fermi surface) determined above T^*. These results suggest that the pseudogap is more likely of precursor pairing rather than magnetic origin.Comment: 4 pages, revtex, 4 postscript color figure
    corecore