189 research outputs found

    Anomalous temperature behavior of resistivity in lightly doped manganites around a metal-insulator phase transition

    Full text link
    An unusual temperature and concentration behavior of resistivity in La0.7Ca0.3Mn1xCuxO3La_{0.7}Ca_{0.3}Mn_{1-x}Cu_xO_3 has been observed at slight CuCu doping (0x0.050\leq x \leq 0.05). Namely, introduction of copper results in a splitting of the resistivity maximum around a metal-insulator transition temperature T0(x)T_0(x) into two differently evolving peaks. Unlike the original CuCu-free maximum which steadily increases with doping, the second (satellite) peak remains virtually unchanged for x<xcx<x_c, increases for xxcx\ge x_c and finally disappears at xm2xcx_m\simeq 2x_c with xc0.03x_c\simeq 0.03. The observed phenomenon is thought to arise from competition between substitution induced strengthening of potential barriers (which hamper the charge hopping between neighboring MnMn sites) and weakening of carrier's kinetic energy. The data are well fitted assuming a nonthermal tunneling conductivity theory with randomly distributed hopping sites.Comment: 10 REVTEX pages, 2 PostScript figures (epsf.sty); to be published in JETP Letter

    Continuous Modeling of Arterial Platelet Thrombus Formation Using a Spatial Adsorption Equation

    Get PDF
    In this study, we considered a continuous model of platelet thrombus growth in an arteriole. A special model describing the adhesion of platelets in terms of their concentration was derived. The applications of the derived model are not restricted to only describing arterial platelet thrombus formation; the model can also be applied to other similar adhesion processes. The model reproduces an auto-wave solution in the one-dimensional case; in the two-dimensional case, in which the surrounding flow is taken into account, the typical torch- like thrombus is reproduced. The thrombus shape and the growth velocity are determined by the model parameters. We demonstrate that the model captures the main properties of the thrombus growth behavior and provides us a better understanding of which mechanisms are important in the mechanical nature of the arterial thrombus growth

    Oxygen isotope effect and phase separation in the optical conductivity of (La0.5_{0.5}Pr0.5_{0.5})0.7_{0.7}Ca0.3_{0.3}MnO3_3 thin films

    Full text link
    The optical conductivities of films of (La0.5_{0.5}Pr0.5_{0.5})0.7_{0.7}Ca0.3_{0.3}MnO3_3 with different oxygen isotopes (16^{16}O and 18^{18}O) have been determined in the spectral range from 0.3 to 4.3 eV using a combination of transmission in the mid-infrared and ellipsometry from the near-infrared to ultra-violet regions. We have found that the isotope exchange strongly affects the optical response in the ferromagnetic phase in a broad frequency range, in contrast to the almost isotope-independent optical conductivity above TCT_C. The substitution by 18^{18}O strongly suppresses the Drude response and a mid-infrared peak while enhancing the conductivity peak at 1.5 eV. A qualitative explanation can be given in terms of the phase separation present in these materials. Moreover, the optical response is similar to the one extracted from measurements in polished samples and other thin films, which signals to the importance of internal strain.Comment: 11 pages, 11 figures, to appear in PR

    Theory of Insulator Metal Transition and Colossal Magnetoresistance in Doped Manganites

    Get PDF
    The persistent proximity of insulating and metallic phases, a puzzling characterestic of manganites, is argued to arise from the self organization of the twofold degenerate e_g orbitals of Mn into localized Jahn-Teller(JT) polaronic levels and broad band states due to the large electron - JT phonon coupling present in them. We describe a new two band model with strong correlations and a dynamical mean-field theory calculation of equilibrium and transport properties. These explain the insulator metal transition and colossal magnetoresistance quantitatively, as well as other consequences of two state coexistence

    Negative magnetoresistance in La(0.6)Y(0.1)Ca(0.3)MnO(3): Evidence for charge localization governed by the Curie-Weiss law

    Full text link
    Colossal negative magnetoresistance \Delta \rho (T,B) observed in La(0.6)Y(0.1)Ca(0.3)MnO(3) at B=1T shows a nearly perfect symmetry around T_0=160K suggesting a universal field-induced transport mechanism in this material. Attributing this symmetry to strong magnetic fluctuations (triggered by the Y substitution and further enhanced by magnetic field, both above and below the field-dependent Curie temperature T_C(B)=T_0), the data are interpreted in terms of the nonthermal spin hopping and magnetization M dependent charge carrier localization scenario leading to \Delta \rho (T,B)= -\rho_s(1-exp(-\gamma M^2)) with M(T,B)=CB/|T-T_C|^n. The separate fits through all the data points above and below T_C yield C^{+}\simeq C^{-} and n^{+}\simeq n^{-}\simeq 1. The obtained results corroborate the importance of fluctuation effects in this material recently found (cond-mat/9812219) to dominate its magneto-thermopower behavior far beyond T_C.Comment: 4 pages (REVTEX), 2 PS figures (epsf.sty); submitted to Phys.Rev.

    Nanoscale phase separation in manganites

    Full text link
    We study the possibility of nanoscale phase separation in manganites in the framework of the double exchange model. The homogeneous canted state of this model is proved to be unstable toward the formation of small ferromagnetic droplets inside an antiferromagnetic insulating matrix. For the ferromagnetic polaronic state we analyze the quantum effects related to the tails of electronic wave function and a possibility of electron hopping in the antiferromagnetic background. We find that these effects lead to the formation of the threshold for the polaronic state.Comment: 10 pages, 2 figures, invited talk on the workshop on Strongly Correlated Electrons in New Materials (SCENM02), Loughborough (UK). submitted to Journal of Physics A: Mathematical and Genera

    Phase diagram and isotope effect in (PrEu)_0.7Ca_0.3CoO_3 cobaltites exhibiting spin-state transitions

    Full text link
    We present the study of magnetization, thermal expansion, specific heat, resistivity, and a.c. susceptibility of (Pr1y_{1-y}Euy_y)0.7_{0.7}Ca0.3_{0.3}CoO3_3 cobaltites. The measurements were performed on ceramic samples with y=0.120.26y = 0.12 - 0.26 and y=1y = 1. Based on these results, we construct the phase diagram, including magnetic and spin-state transitions. The transition from the low- to intermediate-spin state is observed for the samples with y>0.18y > 0.18, whereas for a lower Eu-doping level, there are no spin-state transitions, but a crossover between the ferromagnetic and paramagnetic states occurs. The effect of oxygen isotope substitution along with Eu doping on the magnetic/spin state is discussed. The oxygen-isotope substitution (16^{16}O by 18^{18}O) is found to shift both the magnetic and spin-state phase boundaries to lower Eu concentrations. The isotope effect on the spin-state transition temperature (y>0.18y > 0.18) is rather strong, but it is much weaker for the transition to a ferromagnetic state (y<0.18y < 0.18). The ferromagnetic ordering in the low-Eu doped samples is shown to be promoted by the Co4+^{4+} ions, which favor the formation of the intermediate-spin state of neighboring Co3+^{3+} ions.Comment: 13 pages, including 11 figures, to be published in Phys. Rev.

    Isotope effects and the charge gap formation in the charge ordered phase of colossal magnetoresistance manganites

    Full text link
    Giant oxygen isotope effects observed in colossal magnetoresistance manganites are investigated by employing the combined model of the double exchange and interacting lattice polaron mechanism. We have shown that the isotope effects on TC T_C in the metallic phase and TCO T_{CO} in the charge ordered phase of manganites can be explained well in terms of the double exchange and polaron narrowing factors with reasonable physical parameters.Comment: 5 pages, 3 figure

    Two-dimensional quantum interference contributions to the magnetoresistance of Nd{2-x}Ce{x}CuO{4-d} single crystals

    Full text link
    The 2D weak localization effects at low temperatures T = (0.2-4.2)K have been investigated in nonsuperconducting sample Nd{1.88}Ce{0.12}CuO{4-d} and in the normal state of the superconducting sample Nd{1.82}Ce{0.18}CuO{4-d} for B>B_c2. The phase coherence time and the effective thickness dd of a conducting CuO_2 layer have been estimated by the fitting of 2D weak localization theory expressions to the magnetoresistivity data for the normal to plane and the in-plane magnetic fields.Comment: 5 pages, 4 postscript figure

    Hole-doping dependence of percolative phase separation in Pr_(0.5-delta)Ca_(0.2+delta)Sr_(0.3)MnO_(3) around half doping

    Full text link
    We address the problem of the percolative phase separation in polycrystalline samples of Pr0.5δ_{0.5-\delta}Ca0.2+δ_{0.2+\delta}Sr0.3_{0.3}MnO3_3 for 0.04δ0.04-0.04\leq \delta \leq 0.04 (hole doping nn between 0.46 and 0.54). We perform measurements of X-ray diffraction, dc magnetization, ESR, and electrical resistivity. These samples show at TCT_C a paramagnetic (PM) to ferromagnetic (FM) transition, however, we found that for n>0.50n>0.50 there is a coexistence of both of these phases below TCT_C. On lowering TT below the charge-ordering (CO) temperature TCOT_{CO} all the samples exhibit a coexistence between the FM metallic and CO (antiferromagnetic) phases. In the whole TT range the FM phase fraction (XX) decreases with increasing nn. Furthermore, we show that only for n0.50n\leq 0.50 the metallic fraction is above the critical percolation threshold XC15.5X_C\simeq 15.5%. As a consequence, these samples show very different magnetoresistance properties. In addition, for n0.50n\leq 0.50 we observe a percolative metal-insulator transition at TMIT_{MI}, and for TMI<T<TCOT_{MI}<T<T_{CO} the insulating-like behavior generated by the enlargement of XX with increasing TT is well described by the percolation law ρ1=σ(XXC)t\rho ^{-1}=\sigma \sim (X-X_C)^t, where tt is a critical exponent. On the basis of the values obtained for this exponent we discuss different possible percolation mechanisms, and suggest that a more deep understanding of geometric and dimensionality effects is needed in phase separated manganites. We present a complete TT vs nn phase diagram showing the magnetic and electric properties of the studied compound around half doping.Comment: 9 text pages + 12 figures, submitted to Phys. Rev.
    corecore