3,370 research outputs found

    Cool White Dwarfs Identified in the Second Data Release of the UKIRT Infrared Deep Sky Survey

    Full text link
    We have paired the Second Data Release of the Large Area Survey of the UKIRT Infrared Deep Sky Survey with the Fifth Data Release of the Sloan Digital Sky Survey to identify ten cool white dwarf candidates, from their photometry and astrometry. Of these ten, one was previously known to be a very cool white dwarf. We have obtained optical spectroscopy for seven of the candidates using the GMOS-N spectrograph on Gemini North, and have confirmed all seven as white dwarfs. Our photometry and astrometry indicates that the remaining two objects are also white dwarfs. Model analysis of the photometry and available spectroscopy shows that the seven confirmed new white dwarfs, and the two new likely white dwarfs, have effective temperatures in the range Teff = 5400-6600 K. Our analysis of the previously known white dwarf confirms that it is cool, with Teff = 3800 K. The cooling age for this dwarf is 8.7 Gyr, while that of the nine ~6000 K white dwarfs is 1.8-3.6 Gyr. We are unable to determine the masses of the white dwarfs from the existing data, and therefore we cannot constrain the total ages of the white dwarfs. The large cooling age for the coolest white dwarf in the sample, combined with its low estimated tangential velocity, suggests that it is an old member of the thin disk, or a member of the thick disk of the Galaxy, with an age 10-11 Gyr. The warmer white dwarfs appear to have velocities typical of the thick disk or even halo; these may be very old remnants of low-mass stars, or they may be relatively young thin disk objects with unusually high space motion.Comment: 37 pages (referee format), 4 tables, 7 figures, accepted to Ap

    On the Connection Between Metal Absorbers and Quasar Nebulae

    Get PDF
    We establish a simple model for the distribution of cold gas around L* galaxies using a large set of observational constraints on the properties of strong MgII absorber systems. Our analysis suggests that the halos of L* galaxies are filled with cool gaseous clouds having sizes of order 1kpc and densities of ~10^{-2} cm^{-3}. We then investigate the physical effects of cloud irradiation by a quasar and study the resulting spectral signatures. We show that quasar activity gives rise to (i) extended narrow-line emission on ~100kpc scales and (ii) an anisotropy in the properties of the absorbing gas arising from the geometry of the quasar radiation field. Provided that quasars reside in halos several times more massive than those of L* galaxies, our model predictions appear to be in agreement with observations of narrow emission-line nebulae around quasars and the recent detections of ~100kpc cold gaseous envelopes around those objects, suggesting a common origin for these phenomena. We discuss the implications of our results for understanding absorption systems, probing quasar environments at high redshifts, and testing the quasar unification scheme.Comment: 15 pages, 13 figures (ApJ submitted

    Cool White Dwarfs Found in the UKIRT Infrared Deep Sky Survey

    Full text link
    We present the results of a search for cool white dwarfs in the United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). The UKIDSS LAS photometry was paired with the Sloan Digital Sky Survey (SDSS) to identify cool hydrogen-rich white dwarf candidates by their neutral optical colors and blue near-infrared colors, as well as faint Reduced Proper Motion magnitudes. Optical spectroscopy was obtained at Gemini Observatory, and showed the majority of the candidates to be newly identified cool degenerates, with a small number of G- to K-type (sub)dwarf contaminants. Our initial search of 280 deg2 of sky resulted in seven new white dwarfs with effective temperature T_eff ~ 6000 K. The current followup of 1400 deg2 of sky has produced thirteen new white dwarfs. Model fits to the photometry show that seven of the newly identified white dwarfs have 4120 K <= T_eff <= 4480 K, and cooling ages between 7.3 Gyr and 8.7 Gyr; they have 40 km/s <= v_tan <= 85 km/s and are likely to be thick disk 10-11 Gyr-old objects. The other half of the sample has 4610 K <= T_eff <= 5260 K, cooling ages between 4.3 Gyr and 6.9 Gyr, and 60 km/s <= v_tan <= 100 km/s. These are either thin disk remnants with unusually high velocities, or lower-mass remnants of thick disk or halo late-F or G stars.Comment: To appear in ApJ, accepted April 18 2011. 34 pages include 11 Figures and 5 Table

    Finding Nested Common Intervals Efficiently

    Get PDF
    International audienceIn this paper, we study the problem of effi ciently fi nding gene clusters formalized by nested common intervals between two genomes represented either as permutations or as sequences. Considering permutations, we give several algorithms whose running time depends on the size of the actual output rather than the output in the worst case. Indeed, we first provide a straightforward O(n^3) time algorithm for finding all nested common intervals. We reduce this complexity by providing an O(n^2) time algorithm computing an irredundant output. Finally, we show, by providing a third algorithm, that fi nding only the maximal nested common intervals can be done in linear time. Considering sequences, we provide solutions (modi cations of previously de ned algorithms and a new algorithm) for di fferent variants of the problem, depending on the treatment one wants to apply to duplicated genes

    Lyman-alpha absorption around nearby galaxies

    Full text link
    We have used STIS aboard HST to search for Lyman-alpha (Lya) absorption lines in the outer regions of eight nearby galaxies using background QSOs and AGN as probes. Lya lines are detected within a few hundred km/s of the systemic velocity of the galaxy in all cases. We conclude that a background line-of-sight which passes within 26-200 h-1 kpc of a foreground galaxy is likely to intercept low column density neutral hydrogen with log N(HI) >~ 13.0. The ubiquity of detections implies a covering factor of ~ 100% for low N(HI) gas around galaxies within 200 h-1 kpc. We discuss the difficulty in trying to associate individual absorption components with the selected galaxies and their neighbors, but show that by degrading our STIS data to lower resolutions, we are able to reproduce the anti-correlation of Lya equivalent width and impact parameter found at higher redshift. We also show that the equivalent width and column density of Lya complexes (when individual components are summed over ~ 1000 km/s) correlate well with a simple estimate of the volume density of galaxies brighter than M(B) = -17.5 at the same redshift as a Lya complex. We do not reject the hypothesis that the selected galaxies are directly responsible for the observed Lya lines, but our analysis indicates that absorption by clumpy intragroup gas is an equally likely explanation. (Abriged)Comment: Accepted for publication in Nov 20, 2002 issue of ApJ. Paper with all figures can be found at http://www.astro.princeton.edu/~dvb/lyapaper.ps (preferable). Minor typos fixe
    • …
    corecore