539 research outputs found

    Bayesian model selection for testing the no-hair theorem with black hole ringdowns

    Full text link
    General relativity predicts that a black hole that results from the merger of two compact stars (either black holes or neutron stars) is initially highly deformed but soon settles down to a quiescent state by emitting a superposition of quasi-normal modes (QNMs). The QNMs are damped sinusoids with characteristic frequencies and decay times that depend only on the mass and spin of the black hole and no other parameter - a statement of the no-hair theorem. In this paper we have examined the extent to which QNMs could be used to test the no-hair theorem with future ground- and space-based gravitational-wave detectors. We model departures from general relativity (GR) by introducing extra parameters which change the mode frequencies or decay times from their general relativistic values. With the aid of numerical simulations and Bayesian model selection, we assess the extent to which the presence of such a parameter could be inferred, and its value estimated. We find that it is harder to decipher the departure of decay times from their GR value than it is with the mode frequencies. Einstein Telescope (ET, a third generation ground-based detector) could detect departures of <1% in the frequency of the dominant QNM mode of a 500 Msun black hole, out to a maximum range of 4 Gpc. In contrast, the New Gravitational Observatory (NGO, an ESA space mission to detect gravitational waves) can detect departures of ~ 0.1% in a 10^8 Msun black hole to a luminosity distance of 30 Gpc (z = 3.5).Comment: 9 pages, 5 figure

    Host redshifts from gravitational-wave observations of binary neutron star mergers

    Get PDF
    Inspiralling compact binaries as standard sirens will soon become an invaluable tool for cosmology when advanced interferometric gravitational-wave detectors begin their observations in the coming years. However, a degeneracy in the information carried by gravitational waves between the total rest-frame mass MM and the redshift zz of the source implies that neither can be directly extracted from the signal, but only the combination M(1+z)M(1+z), the redshifted mass. Recent work has shown that for binary neutron star systems, a tidal correction to the gravitational-wave phase in the late-inspiral signal that depends on the rest-frame source mass could be used to break the mass-redshift degeneracy. We propose here to use the signature encoded in the post-merger signal to deduce the redshift to the source. This will allow an accurate extraction of the intrinsic rest-frame mass of the source, in turn permitting the determination of source redshift and luminosity distance solely from gravitational-wave observations. This will herald a new era in precision cosmography and astrophysics. Using numerical simulations of binary neutron star mergers of very slightly different mass, we model gravitational-wave signals at different redshifts and use Bayesian parameter estimation to determine the accuracy with which the redshift can be extracted for a source of known mass. We find that the Einstein Telescope can determine the source redshift to sim10sim 10--2020% at redshifts of z<0.04z<0.04.Comment: 10 pages, 4 figures; same as the version before except for acknowledgment

    Astrophysical science metrics for next-generation gravitational-wave detectors

    Get PDF
    The second generation of gravitational-wave detectors are being built and tuned all over the world. The detection of signals from binary black holes is beginning to fulfill the promise of gravitational-wave astronomy. In this work, we examine several possible configurations for third-generation laser interferometers in existing km-scale facilities. We propose a set of astrophysically motivated metrics to evaluate detector performance. We measure the impact of detector design choices against these metrics, providing a quantitative cost-benefit analyses of the resulting scientific payoffs

    Core-Collapse Supernovae, Neutrinos, and Gravitational Waves

    Get PDF
    Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next galactic or near extragalactic core-collapse supernova will yield a wealth of information on the explosion mechanism, but also on the structure and angular momentum of the progenitor star, and on aspects of fundamental physics such as the equation of state of nuclear matter at high densities and low entropies. In this contribution to the proceedings of the Neutrino 2012 conference, we summarize recent progress made in the theoretical understanding and modeling of core-collapse supernovae. In this, our emphasis is on multi-dimensional processes involved in the explosion mechanism such as neutrino-driven convection and the standing accretion shock instability. As an example of how supernova neutrinos can be used to probe fundamental physics, we discuss how the rise time of the electron antineutrino flux observed in detectors can be used to probe the neutrino mass hierarchy. Finally, we lay out aspects of the neutrino and gravitational-wave signature of core-collapse supernovae and discuss the power of combined analysis of neutrino and gravitational wave data from the next galactic core-collapse supernova

    Observing gravitational waves from core-collapse supernovae in the advanced detector era

    Get PDF
    The next galactic core-collapse supernova (CCSN) has already exploded, and its electromagnetic (EM) waves, neutrinos, and gravitational waves (GWs) may arrive at any moment. We present an extensive study on the potential sensitivity of prospective detection scenarios for GWs from CCSNe within 5 Mpc, using realistic noise at the predicted sensitivity of the Advanced LIGO and Advanced Virgo detectors for 2015, 2017, and 2019. We quantify the detectability of GWs from CCSNe within the Milky Way and Large Magellanic Cloud, for which there will be an observed neutrino burst. We also consider extreme GW emission scenarios for more distant CCSNe with an associated EM signature. We find that a three-detector network at design sensitivity will be able to detect neutrino-driven CCSN explosions out to ∼5.5  kpc, while rapidly rotating core collapse will be detectable out to the Large Magellanic Cloud at 50 kpc. Of the phenomenological models for extreme GW emission scenarios considered in this study, such as long-lived bar-mode instabilities and disk fragmentation instabilities, all models considered will be detectable out to M31 at 0.77 Mpc, while the most extreme models will be detectable out to M82 at 3.52 Mpc and beyond

    Cellular mechano-environment regulates the mammary circadian clock

    Get PDF
    Circadian clocks drive B24 h rhythms in tissue physiology. They rely on transcriptional/ translational feedback loops driven by interacting networks of clock complexes. However, little is known about how cell-intrinsic circadian clocks sense and respond to their microenvironment. Here, we reveal that the breast epithelial clock is regulated by the mechano-chemical stiffness of the cellular microenvironment in primary cell culture. Moreover, the mammary clock is controlled by the periductal extracellular matrix in vivo, which contributes to a dampened circadian rhythm during ageing. Mechanistically, the tension sensing cell-matrix adhesion molecule, vinculin, and the Rho/ROCK pathway, which transduces signals provided by extracellular stiffness into cells, regulate the activity of the core circadian clock complex. We also show that genetic perturbation, or age-associated disruption of self-sustained clocks, compromises the self-renewal capacity of mammary epithelia. Thus, circadian clocks are mechano-sensitive, providing a potential mechanism to explain how ageing influences their amplitude and function

    Astrophysical science metrics for next-generation gravitational-wave detectors

    Get PDF
    The second generation of gravitational-wave (GW) detectors are being built and tuned all over the world. The detection of signals from binary black holes is beginning to fulfil the promise of GW astronomy. In this work, we examine several possible configurations for third-generation laser interferometers in existing km-scale facilities. We propose a set of astrophysically motivated metrics to evaluate detector performance. We measure the impact of detector design choices against these metrics, providing a quantitative cost-benefit analyses of the resulting scientific payoffs

    The scientific potential of space-based gravitational wave detectors

    Full text link
    The millihertz gravitational wave band can only be accessed with a space-based interferometer, but it is one of the richest in potential sources. Observations in this band have amazing scientific potential. The mergers between massive black holes with mass in the range 10 thousand to 10 million solar masses, which are expected to occur following the mergers of their host galaxies, produce strong millihertz gravitational radiation. Observations of these systems will trace the hierarchical assembly of structure in the Universe in a mass range that is very difficult to probe electromagnetically. Stellar mass compact objects falling into such black holes in the centres of galaxies generate detectable gravitational radiation for several years prior to the final plunge and merger with the central black hole. Measurements of these systems offer an unprecedented opportunity to probe the predictions of general relativity in the strong-field and dynamical regime. Millihertz gravitational waves are also generated by millions of ultra-compact binaries in the Milky Way, providing a new way to probe galactic stellar populations. ESA has recognised this great scientific potential by selecting The Gravitational Universe as its theme for the L3 large satellite mission, scheduled for launch in ~2034. In this article we will review the likely sources for millihertz gravitational wave detectors and describe the wide applications that observations of these sources could have for astrophysics, cosmology and fundamental physics.Comment: 18 pages, 2 figures, contribution to Gravitational Wave Astrophysics, the proceedings of the 2014 Sant Cugat Forum on Astrophysics; v2 includes one additional referenc
    • …
    corecore