3,491 research outputs found

    Applying black hole perturbation theory to numerically generated spacetimes

    Get PDF
    Nonspherical perturbation theory has been necessary to understand the meaning of radiation in spacetimes generated through fully nonlinear numerical relativity. Recently, perturbation techniques have been found to be successful for the time evolution of initial data found by nonlinear methods. Anticipating that such an approach will prove useful in a variety of problems, we give here both the practical steps, and a discussion of the underlying theory, for taking numerically generated data on an initial hypersurface as initial value data and extracting data that can be considered to be nonspherical perturbations.Comment: 14 pages, revtex3.0, 5 figure

    Toward an anisotropic atom-atom model for the crystalline phases of the molecular S8 compound

    Full text link
    We analize two anisotropic atom-atom models used to describe the crystalline alpha,beta and gamma phases of S8 crystals, the most stable compound of elemental sulfur in solid phases, at ambient pressure and T<=400 K. The calculations are performed via a series of classical molecular dynamics (MD) simulations, with flexible molecular models and using a constant pressure-constant temperature algorithm for the numerical simulations. All intramolecular modes that mix with lattice modes, and are therefore relevant on the onset of structural phase transitions, are taken into account. Comparisons with experimental data and previous results obtained with an isotropic atom-atom molecular model are also performed.Comment: Major changes, new simulations and figures added, revtex4, to appear in J. Chem. Phy

    Comment on "Zeeman-Driven Lifshitz Transition: A Model for the Experimentally Observed Fermi-Surface Reconstruction in YbRh2Si2"

    Full text link
    In Phys. Rev. Lett. 106, 137002 (2011), A. Hackl and M. Vojta have proposed to explain the quantum critical behavior of YbRh2Si2 in terms of a Zeeman-induced Lifshitz transition of an electronic band whose width is about 6 orders of magnitude smaller than that of conventional metals. Here, we note that the ultra-narrowness of the proposed band, as well as the proposed scenario per se, lead to properties which are qualitatively inconsistent with the salient features observed in YbRh2Si2 near its quantum critical point.Comment: 3 page

    Waveform propagation in black hole spacetimes: evaluating the quality of numerical solutions

    Get PDF
    We compute the propagation and scattering of linear gravitational waves off a Schwarzschild black hole using a numerical code which solves a generalization of the Zerilli equation to a three dimensional cartesian coordinate system. Since the solution to this problem is well understood it represents a very good testbed for evaluating our ability to perform three dimensional computations of gravitational waves in spacetimes in which a black hole event horizon is present.Comment: 13 pages, RevTeX, to appear in Phys. Rev.

    Superconducting RF Metamaterials Made with Magnetically Active Planar Spirals

    Full text link
    Superconducting metamaterials combine the advantages of low-loss, large inductance (with the addition of kinetic inductance), and extreme tunability compared to their normal metal counterparts. Therefore, they allow realization of compact designs operating at low frequencies. We have recently developed radio frequency (RF) metamaterials with a high loaded quality factor and an electrical size as small as \simλ\lambda658, (λ\lambda is the free space wavelength) by using Nb thin films. The RF metamaterial is composed of truly planar spirals patterned with lithographic techniques. Linear transmission characteristics of these metamaterials show robust Lorentzian resonant peaks in the sub- 100 MHz frequency range below the TcT_c of Nb. Though Nb is a non-magnetic material, the circulating currents in the spirals generated by RF signals produce a strong magnetic response, which can be tuned sensitively either by temperature or magnetic field thanks to the superconducting nature of the design. We have also observed strong nonlinearity and meta-stable jumps in the transmission data with increasing RF input power until the Nb is driven into the normal state. We discuss the factors modifying the induced magnetic response from single and 1-D arrays of spirals in the light of numerical simulations.Comment: 4 pages, 7 figure

    The collision of boosted black holes

    Get PDF
    We study the radiation from a collision of black holes with equal and opposite linear momenta. Results are presented from a full numerical relativity treatment and are compared with the results from a ``close-slow'' approximation. The agreement is remarkable, and suggests several insights about the generation of gravitational radiation in black hole collisions.Comment: 8 pages, RevTeX, 3 figures included with eps

    The Droplet State and the Compressibility Anomaly in Dilute 2D Electron Systems

    Full text link
    We investigate the space distribution of carrier density and the compressibility of two-dimensional (2D) electron systems by using the local density approximation. The strong correlation is simulated by the local exchange and correlation energies. A slowly varied disorder potential is applied to simulate the disorder effect. We show that the compressibility anomaly observed in 2D systems which accompanies the metal-insulator transition can be attributed to the formation of the droplet state due to disorder effect at low carrier densities.Comment: 4 pages, 3 figure

    Evidence for a Kondo destroying quantum critical point in YbRh2Si2

    Full text link
    The heavy-fermion metal YbRh2_{2}Si2_{2} is a weak antiferromagnet below TN=0.07T_{N} = 0.07 K. Application of a low magnetic field Bc=0.06B_{c} = 0.06 T (c\perp c) is sufficient to continuously suppress the antiferromagnetic (AF) order. Below T10T \approx 10 K, the Sommerfeld coefficient of the electronic specific heat γ(T)\gamma(T) exhibits a logarithmic divergence. At T<0.3T < 0.3 K, γ(T)Tϵ\gamma(T) \sim T^{-\epsilon} (ϵ:0.30.4\epsilon: 0.3 - 0.4), while the electrical resistivity ρ(T)=ρ0+aT\rho(T) = \rho_{0} + aT (ρ0\rho_{0}: residual resistivity). Upon extrapolating finite-TT data of transport and thermodynamic quantities to T=0T = 0, one observes (i) a vanishing of the "Fermi surface crossover" scale T(B)T^{*}(B), (ii) an abrupt jump of the initial Hall coefficient RH(B)R_{H}(B) and (iii) a violation of the Wiedemann Franz law at B=BcB = B_{c}, the field-induced quantum critical point (QCP). These observations are interpreted as evidence of a critical destruction of the heavy quasiparticles, i.e., propagating Kondo singlets, at the QCP of this material.Comment: 20 pages, 8 figures, SCES 201

    The Evolution of Distorted Rotating Black Holes II: Dynamics and Analysis

    Full text link
    We have developed a numerical code to study the evolution of distorted, rotating black holes. This code is used to evolve a new family of black hole initial data sets corresponding to distorted ``Kerr'' holes with a wide range of rotation parameters, and distorted Schwarzschild black holes with odd-parity radiation. Rotating black holes with rotation parameters as high as a/m=0.87a/m=0.87 are evolved and analyzed in this paper. The evolutions are generally carried out to about t=100Mt=100M, where MM is the ADM mass. We have extracted both the even- and odd-parity gravitational waveforms, and find the quasinormal modes of the holes to be excited in all cases. We also track the apparent horizons of the black holes, and find them to be a useful tool for interpreting the numerical results. We are able to compute the masses of the black holes from the measurements of their apparent horizons, as well as the total energy radiated and find their sum to be in excellent agreement with the ADM mass.Comment: 26 pages, LaTeX with RevTeX 3.0 macros. 27 uuencoded gz-compressed postscript figures. Also available at http://jean-luc.ncsa.uiuc.edu/Papers/ Submitted to Physical Review

    Head-on collision of unequal mass black holes: close-limit predictions

    Full text link
    The close-limit method has given approximations in excellent agreement with those of numerical relativity for collisions of equal mass black holes. We consider here colliding holes with unequal mass, for which numerical relativity results are not available. We try to ask two questions: (i) Can we get approximate answers to astrophysical questions (ideal mass ratio for energy production, maximum recoil velocity, etc.), and (ii) can we better understand the limitations of approximation methods. There is some success in answering the first type of question, but more with the second, especially in connection with the issue of measures of the intrinsic mass of the colliding holes, and of the range of validity of the method.Comment: 19 pages, RevTeX + 9 postscript figure
    corecore