415 research outputs found

    Development and Role in Therapy of Canakinumab in Adult-Onset Still's Disease

    Get PDF
    Adult-onset Still's disease (AOSD) is a rare inflammatory disease of unknown etiology typically characterized by episodes of spiking fever, evanescent rash, arthralgia, leukocytosis, and hyperferritinemia. The pivotal role of interleukin (IL)-1 and other pro-inflammatory cytokines gives rise to the development of new targeted therapies. Currently, AOSD patients can benefit from efficient and well tolerated biologic agents, such as IL-1, IL-6, and tumour necrosis factor (TNF)-\u3b1 antagonists. Canakinumab, a human monoclonal anti-IL-1\u3b2 antibody, is indicated for the treatment of different autoinflammatory syndromes in adults, adolescents, and children and it has recently been approved for AOSD treatment. In this article, we summarize the structural and biochemical data describing the molecular interactions between Canakinumab and its target antigen. Some special considerations of the pharmacological properties of Canakinumab are included. We also review the safety, efficacy and tolerability of this drug for the treatment of AOSD

    Macrophytes: A temporary sink for microplastics in transitional water systems

    Get PDF
    Marine macrophytes are hypothesized to be a major temporary sink for microplastics. In this study, microplastic contamination was investigated in 15 macroalgal species and one seagrass from different sites in two lagoons of the northern Adriatic Sea: the Goro lagoon and the Venice lagoon. A high percentage (94%) of the macrophyte samples contained microplastics, ranging from 0.16 to 330 items g−1 fw, with the prevalent size in the range 30–90 µm and an average contamination per unit of fresh weight of 14 items g−1 fw. Microplastic contamination displayed a site-specific, rather than a species-specific, pattern of accumulation. In addition, exopolysaccharides (EPS) displayed a significant positive correlation with the microplastics ononcontamination on macrophytes acting as glue for the plastic particles available in the water column

    Metal bioaccumulation and oxidative stress in ulva laetevirens in the venice lagoon: Early warning biomarker for metal bioaccumulation

    Get PDF
    Transitional water systems (TWSs) may be threatened by various metals originating from increased agricultural, industrial activities, or urban effluents. Macroalgae are one of the biological quality elements used to monitor and assess the health status of TWS due to their structural and functional key role in marine ecosystems. Here, metal accumulation from the macroalgae Ulva laetevirens Areschoug (1854) and oxidative stress by lipid peroxidation (LPO) biomarker were investigated during four sampling seasons from three sampling sites (SMM: Santa Maria del Mare; PM: Porto Marghera; SG: San Giuliano) of Venice Lagoon, affected by different anthropogenic stressors. The metal pollution index (MPI) scores for U. laetevirens increased in the order SMM < PM < SG (sea inlet < industrial area < Osellino River estuary), with average values per site of 2.99, 4.37, and 6.33, respectively. The level of LPO was statistically correlated with the concentration of toxic metal(loid)s (As, Pb, Hg) measured in macroalgae, and seasonality affected both levels of LPO and metal bioaccumulation, with peak values during spring and summer. These findings highlighted the efficiency and usefulness of the oxidative stress test (LPO) on the common macroalga U. laetevirens as an early warning signal for health assessment in aquatic ecosystems

    Effect of ecological recovery on macrophyte dominance and production in the Venice Lagoon.

    Get PDF
    In the last decade, the Venice Lagoon showed a significant environmental recovery that changed the assemblages of macroalgal and aquatic angiosperm dominant species and increased significantly the primary production. The decreasing of anthropogenic impacts, such as eutrophication and clam harvesting, favored a strong reduction of Ulvaceae, replaced by species with higher ecological value, and the recolonization of aquatic angiosperms. Consequently, hypo-anoxic conditions, once frequently occurring in the lagoon, have been considerably reduced and aquatic angiosperms have recolonized the area, covering 94.8 km2 in comparison to the 55.9 km2 recorded in 2003 (+70%). Cymodocea nodosa, Zostera marina and Zostera noltei expanded by 37.5%, 44.6% and 191%, respectively, with a significant increase in biomass and primary production. In late spring 2018, angiosperms showed a standing crop of ca. 372 ktonnes (+77%) and a net primary production of ca. 1189 ktonnes FW (+67%). In the meantime, Ruppia cirrhosa, which since the ‘80s had disappeared from the lagoon areas subjected to tidal expansion, but was still present in some fishing valleys, recolonized the bottoms of the northern lagoon with meadows of over 6 km2; this accounted for a standing crop and net primary production of 8.9 and 18.0 ktonnes, respectively. On the basis of surveys carried out in 2021, ecological conditions are still improving, and this is increasing both the biodiversity and the production of macroalgae and aquatic angiosperms

    Sedimentation Rates: Anthropogenic Impacts and Environmental Changes in Transitional Water Systems

    Get PDF
    The trophic evolution of the Venice lagoon was analyzed by studying the particulate collected monthly with sedimentation traps in many areas of the Venice lagoon since 1989, and at Goro in 2018–2019. Sedimentation rates were strongly related to the presence of macrophytes, which reduced sediment resuspension, and to anthropogenic pressures, such as clam harvesting and naval-boat traffic, that triggered sediment resuspension and loss. The highest mean annual sedimentation rates (from 2000 to over 4000 g DWT m−2 day−1) have been recorded in many areas of the Venice lagoon between 1998–1999 to 2001–2002, during the intense fishing activities of the clam Ruditapes philippinarum. High values (daily peaks up to 5224 g DWT m−2 day−1) were also recorded in areas affected by marine and/or recreational traffic, due to the high wave motion. In contrast, the presence of high biomasses of macroalgae, or seagrasses, reduced significantly sediment resuspension and settlement, with mean annual sedimentation rates ranging between 40 and 140 g DWT m−2 day−1 and minimum values of 6–10 g DWT m−2 day−1. High sedimentation rates were strongly related to a lower sediment grain-size, with loss of the fine fraction and dispersion of nutrients and pollutants in the whole lagoon

    MonitorNet: studio italiano osservazionale multicentrico per la valutazione del profilo rischio-beneficio dei farmaci biologici nella pratica clinica reumatologica

    Get PDF
    Over the last decade, several new biologic agents have become available for the treatment of patients with rheumatoid arthritis (RA), psoriatic arthritis (PsA), ankylosing spondylitis (AS) and psoriasis (Ps). In contrast to conventional disease modifying anti-rheumatic drugs (DMARDs), these biological agents have rapid onset of action and pronounced disease reducing activity when administered as monotherapy or in combination with MTX. Pre-registration randomised clinical trials have compared biological agents against placebo over a limited time span (1-3). Wider use of biologics has resulted in reports of a wide range of adverse events (4), including evidence of reactivation of latent tuberculosis, increased incidence..

    Ecosystem organic carbon stock estimations in the sile river, north eastern Italy

    Get PDF
    River ecosystems are one of the dynamic components of the terrestrial carbon cycle that provide a crucial function in ecosystem processes and high value to ecosystem services. A large amount of carbon is transported from terrestrial to the ocean through river flows. In order to evaluate the contribution of Sile River ecosystem to the global carbon stock, the river ecosystem Organic Carbon (OC) stock was quantified for sediments and dominant submerged aquatic macrophytes (SAMs) during the two sampling periods at three different stations along the Sile River (North Eastern Italy). The total mean ecosystem OC stock was 95.2 ± 13.8 Mg C ha−1 while those of SAMs ranged from 7.0 to 10.9 Mg C ha−1 which accounted for approx. 10% of the total OC stock. The total aboveground biomass retains approx. 90% of the SAM carbon stock, with a mean of 8.9 ± 1.6 Mg C ha−1 . The mean sediment OC stock was 86.6 ± 14.5 Mg C ha−1 with low seasonal variations among the sites. Indeed, various environmental parameters and hydrodynamics appear to affect the accumulation of OC within the river ecosystem. The results highlight the role that freshwater river ecosystems play in the global carbon cycle, which consequently provide a baseline for future river ecosystem monitoring programs. Furthermore, future studies with additional sites and seasonal surveys of the river will enhance our understanding of the effects of global climate change on the river ecosystem and improve the ecosystem services

    Diversity and dynamics of seaweed associated microbial communities inhabiting the lagoon of venice

    Get PDF
    Seaweeds are a group of essential photosynthetic organisms that harbor a rich diversity of associated microbial communities with substantial functions related to host health and defense. Environmental and anthropogenic stressors may disrupt the microbial communities and their metabolic activity, leading to host physiological alterations that negatively affect seaweeds’ performance and survival. Here, the bacterial communities associated with one of the most common seaweed, Ulva laetevirens Areshough, were sampled over a year at three sites of the lagoon of Venice affected by different environmental and anthropogenic stressors. Bacterial communities were characterized through Illumina sequencing of the V4 hypervariable region of 16S rRNA genes. The study demonstrated that the seaweed associated bacterial communities at sites impacted by environmental stressors were host-specific and differed significantly from the less affected site. Furthermore, these communities were significantly distinct from those of the surrounding seawater. The bacterial communities’ composition was significantly correlated with environmental parameters (nutrient concentrations, dissolved oxygen saturation, and pH) across sites. This study showed that several more abundant bacteria on U. laetevirens at stressed sites belonged to taxa related to the host response to the stressors. Overall, environmental parameters and anthropogenic stressors were shown to substantially affect seaweed associated bacterial communities, which reflect the host response to environmental variations
    • …
    corecore