89 research outputs found

    Contrast Adaptation Contributes to Contrast-Invariance of Orientation Tuning of Primate V1 Cells

    Get PDF
    BACKGROUND: Studies in rodents and carnivores have shown that orientation tuning width of single neurons does not change when stimulus contrast is modified. However, in these studies, stimuli were presented for a relatively long duration (e. g., 4 seconds), making it possible that contrast adaptation contributed to contrast-invariance of orientation tuning. Our first purpose was to determine, in marmoset area V1, whether orientation tuning is still contrast-invariant with the stimulation duration is comparable to that of a visual fixation. METHODOLOGY/PRINCIPAL FINDINGS: We performed extracellular recordings and examined orientation tuning of single-units using static sine-wave gratings that were flashed for 200 msec. Sixteen orientations and three contrast levels, representing low, medium and high values in the range of effective contrasts for each neuron, were randomly intermixed. Contrast adaptation being a slow phenomenon, cells did not have enough time to adapt to each contrast individually. With this stimulation protocol, we found that the tuning width obtained at intermediate contrast was reduced to 89% (median), and that at low contrast to 76%, of that obtained at high contrast. Therefore, when probed with briefly flashed stimuli, orientation tuning is not contrast-invariant in marmoset V1. Our second purpose was to determine whether contrast adaptation contributes to contrast-invariance of orientation tuning. Stationary gratings were presented, as previously, for 200 msec with randomly varying orientations, but the contrast was kept constant within stimulation blocks lasting >20 sec, allowing for adaptation to the single contrast in use. In these conditions, tuning widths obtained at low contrast were still significantly less than at high contrast (median 85%). However, tuning widths obtained with medium and high contrast stimuli no longer differed significantly. CONCLUSIONS/SIGNIFICANCE: Orientation tuning does not appear to be contrast-invariant when briefly flashed stimuli vary in both contrast and orientation, but contrast adaptation partially restores contrast-invariance of orientation tuning

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    The influence of muscular action on bone strength via exercise

    Get PDF
    Mechanical stimuli influence bone strength, with internal muscular forces thought to be the greatest stressors of bone. Consequently, the effects of exercise in improving and maintaining bone strength have been explored in a number of interventional studies. These studies demonstrate a positive effect of high-impact activities (i.e. where large muscle forces are produced) on bone strength, with benefits being most pronounced in interventions in early pubertal children. However, current studies have not investigated the forces acting on bones and subsequent deformation, preventing the development of optimised and targeted exercise interventions. Similarly, the effects of number and frequency of exercise repetitions and training sessions on bone accrual are unexplored. There are conflicting results as to gender effects on bone response to exercise, and the effects of age and starting age on the osteogenic effects of exercise are not well known. It also appears that exercise interventions are most effective in physically inactive people or counteracting conditions of disuse such as bed rest. Bone strength is only one component of fracture risk, and it may be that exercise resulting in improvements in, e.g., muscle force/power and/or balance is more effective than those whose effects are solely osteogenic. In summary, exercise is likely to be an effective tool in maintaining bone strength but current interventions are far from optimal. © Springer Science+Business Media 2013

    What determines cell size?

    Get PDF
    AbstractFirst paragraph (this article has no abstract) For well over 100 years, cell biologists have been wondering what determines the size of cells. In modern times, we know all of the molecules that control the cell cycle and cell division, but we still do not understand how cell size is determined. To check whether modern cell biology has made any inroads on this age-old question, BMC Biology asked several heavyweights in the field to tell us how they think cell size is controlled, drawing on a range of different cell types. The essays in this collection address two related questions - why does cell size matter, and how do cells control it

    “Doubled-haploid” allohexaploid Brassica lines lose fertility and viability and accumulate genetic variation due to genomic instability

    No full text
    Microspore culture stimulates immature pollen grains to develop into plants via tissue culture and is used routinely in many crop species to produce "doubled haploids": homozygous, true-breeding lines. However, microspore culture is also often used on material that does not have stable meiosis, such as interspecific hybrids. In this case, the resulting progeny may lose their "doubled haploid" homozygous status as a result of chromosome missegregation and homoeologous exchanges. However, little is known about the frequency of these effects. We assessed fertility, meiosis and genetic variability in self-pollinated progeny sets (the MDL2 population) resulting from first-generation plants (the MDL1 population) derived from microspores of a near-allohexaploid interspecific hybrid from the cross (Brassica napus × B. carinata) × B. juncea. Allelic inheritance and copy number variation were predicted using single nucleotide polymorphism marker data from the Illumina Infinium 60K Brassica array. Seed fertility and viability decreased substantially from the MDL1 to the MDL2 generation. In the MDL2 population, 87% of individuals differed genetically from their MDL1 parent. These genetic differences resulted from novel homoeologous exchanges between chromosomes, chromosome loss and gain, and segregation and instability of pre-existing karyotype abnormalities. Novel karyotype change was extremely common, with 2.2 new variants observed per MDL2 individual. Significant differences between progeny sets in the number of novel genetic variants were also observed. Meiotic instability clearly has the potential to dramatically change karyotypes (often without detectable effects on the presence or absence of alleles) in putatively homozygous, microspore-derived lines, resulting in loss of fertility and viability

    Inherited allelic variants and novel karyotype changes influence fertility and genome stability in Brassica allohexaploids

    No full text
    Synthetic allohexaploid Brassica hybrids (2n\ua0=\ua0AABBCC) do not exist naturally, but can be synthesized by crosses between diploid and/or allotetraploid Brassica species. Using these hybrids, we aimed to identify how novel allohexaploids restore fertility and normal meiosis after formation. Chromosome inheritance, genome structure, fertility and meiotic behaviour were assessed in three segregating allohexaploid populations derived from the cross (B.\ua0napus\ua0×\ua0B.\ua0carinata)\ua0×\ua0B.\ua0juncea using a combination of molecular marker genotyping, phenotyping and cytogenetics. Plants with unbalanced A-C translocations in one direction (where a C-genome chromosome fragment replaces an A-genome fragment) but not the other (where an A-genome fragment replaces a C-genome fragment) showed significantly reduced fertility across all populations. Genomic regions associated with fertility contained several meiosis genes with putatively causal mutations inherited from the parents (copies of SCC2 in the A genome, PAIR1/PRD3, PRD1 and ATK1/KATA/KIN14a in the B genome, and MSH2 and SMC1/TITAN8 in the C genome). Reduced seed fertility associated with the loss of chromosome fragments from only one subgenome following homoeologous exchanges could comprise a mechanism for biased genome fractionation in allopolyploids. Pre-existing meiosis gene variants present in allotetraploid parents may help to stabilize meiosis in novel allohexaploids

    Repressive chromatin modification underpins the long-term expression trend of a perennial flowering gene in nature

    Get PDF
    植物が春の「暖かさ」を感じて「寒さ」を無視して花を咲かせるしくみを解明. 京都大学プレスリリース. 2020-05-29.Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In Arabidopsis halleri, the flowering regulator AhgFLC shows upregulation and downregulation phases along with long-term past temperature, but the underlying machinery remains elusive. Here, we investigate the seasonal dynamics of histone modifications, H3K27me3 and H3K4me3, at AhgFLC in a natural population. Our advanced modelling and transplant experiments reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides two essential properties. One is the ability to respond to the long-term temperature trends via bidirectional interactions between H3K27me3 and H3K4me3; the other is the ratchet-like character of the AhgFLC system, i.e. reversible in the entire perennial life cycle but irreversible during the upregulation phase. Furthermore, we show that the long-term temperature trends are locally indexed at AhgFLC in the form of histone modifications. Our study provides a more comprehensive understanding of H3K27me3 function at AhgFLC in a complex natural environment
    corecore