8,702 research outputs found

    CTLA-4 rs231775 and risk of acute renal graft rejection: an updated meta-analysis with trial sequential analysis

    Get PDF
    Contrasting results exist on the association between CTLA-4 rs231775 and acute rejection in kidney transplant recipients. We herein conducted an updated systematic review with meta-analysis and trial sequential analysis (TSA) to clarify this relationship and to establish whether the current evidence is sufficient to draw firm conclusions. In addition, noteworthiness of significant pooled odds ratios (ORs) was estimated by false positive report probability (FPRP). A comprehensive search was performed through PubMed, Web of Knowledge, Cochrane Library and Open Grey up to October 2019. Fifteen independent cohorts, including a total of 5,401 kidney transplant recipients, were identified through the systematic review. Overall, no association was detected with the allelic (OR 1.07, 95% CI 0.88\u20131.30, P = 0.49), dominant (OR 0.94, 95% CI 0.73\u20131.22, P = 0.66) or the recessive (OR 1.18, 95% CI 0.97\u20131.43, P = 0.096) model of CTLA-4 rs231775. In each genetic model, the cumulative Z-curve in TSA crossed the futility boundary and entered the\ua0futility\ua0area. In addition, none of the significant genetic comparisons detected in the subsequent and sensitivity analyses or in previously reported meta-analyses were found to be noteworthy by FPRP. In conclusion, this study provides strong evidence that CTLA-4 rs231775 is not a clinically-relevant genetic risk determinant of acute rejection after renal transplantation

    On the question of universality in \RPn and \On Lattice Sigma Models

    Get PDF
    We argue that there is no essential violation of universality in the continuum limit of mixed \RPn and \On lattice sigma models in 2 dimensions, contrary to opposite claims in the literature.Comment: 16 pages (latex) + 3 figures (Postscript), uuencode

    Local Hall effect in hybrid ferromagnetic/semiconductor devices

    Full text link
    We have investigated the magnetoresistance of ferromagnet-semiconductor devices in an InAs two-dimensional electron gas system in which the magnetic field has a sinusoidal profile. The magnetoresistance of our device is large. The longitudinal resistance has an additional contribution which is odd in applied magnetic field. It becomes even negative at low temperature where the transport is ballistic. Based on the numerical analysis, we confirmed that our data can be explained in terms of the local Hall effect due to the profile of negative and positive field regions. This device may be useful for future spintronic applications.Comment: 4 pages with 4 fugures. Accepted for publication in Applied Physics Letter

    Time-Optimal Adiabatic-Like Expansion of Bose-Einstein Condensates

    Full text link
    In this paper we study the fast adiabatic-like expansion of a one-dimensional Bose-Einstein condensate (BEC) confined in a harmonic potential, using the theory of time-optimal control. We find that under reasonable assumptions suggested by the experimental setup, the minimum-time expansion occurs when the frequency of the potential changes in a bang-bang form between the permitted values. We calculate the necessary expansion time and show that it scales logarithmically with large values of the expansion factor. This work is expected to find applications in areas where the efficient manipulations of BEC is of utmost importance. As an example we present the field of atom interferometry with BEC, where the wavelike properties of atoms are used to perform interference experiments that measure with unprecedented precision small shifts induced by phenomena like rotation, acceleration, and gravity gradients.Comment: Submitted to 51st IEEE Conference on Decision and Contro

    Non-monotonic temperature dependent transport in graphene grown by Chemical Vapor Deposition

    Full text link
    Temperature-dependent resistivity of graphene grown by chemical vapor deposition (CVD) is investigated. We observe in low mobility CVD graphene device a strong insulating behavior at low temperatures and a metallic behavior at high temperatures manifesting a non-monotonic in the temperature dependent resistivity.This feature is strongly affected by carrier density modulation. To understand this anomalous temperature dependence, we introduce thermal activation of charge carriers in electron-hole puddles induced by randomly distributed charged impurities. Observed temperature evolution of resistivity is then understood from the competition among thermal activation of charge carriers, temperature-dependent screening and phonon scattering effects. Our results imply that the transport property of transferred CVD-grown graphene is strongly influenced by the details of the environmentComment: 7 pages, 3 figure

    Quantum paraelectric phase of SrTiO<sub>3</sub> from first principles

    Get PDF
    We demonstrate how the quantum paraelectric ground state of SrTiO3 can be accessed via a microscopic ab initio approach based on density functional theory. At low temperature the quantum fluctuations are strong enough to stabilize the paraelectric phase even though a classical description would predict a ferroelectric phase. We find that accounting for quantum fluctuations of the lattice and for the strong coupling between the ferroelectric soft mode and lattice elongation is necessary to achieve quantitative agreement with experimental frequency of the ferroelectric soft mode. The temperature dependent properties in SrTiO3 are also well captured by the present microscopic framework

    Anomalies and Hawking radiation from the Reissner-Nordstr\"om black hole with a global monopole

    Full text link
    We extend the work by S. Iso, H. Umetsu and F. Wilczek [Phys. Rev. Lett. 96 (2006) 151302] to derive the Hawking flux via gauge and gravitational anomalies of a most general two-dimensional non-extremal black hole space-time with the determinant of its diagonal metric differing from the unity (−g≠1\sqrt{-g} \neq 1) and use it to investigate Hawking radiation from the Reissner-Nordstrom black hole with a global monopole by requiring the cancellation of anomalies at the horizon. It is shown that the compensating energy momentum and gauge fluxes required to cancel gravitational and gauge anomalies at the horizon are precisely equivalent to the (1+1)(1+1)-dimensional thermal fluxes associated with Hawking radiation emanating from the horizon at the Hawking temperature. These fluxes are universally determined by the value of anomalies at the horizon.Comment: 18 pages, 0 figure. 1 footnote and 4 new reference adde

    Composite Skyrme Model with Vector Mesons

    Full text link
    We study the composite Skyrme model, proposed by Cheung and G\"{u}rsey, introducing vector mesons in a chiral Lagrangian. We calculate the static properties of baryons and compare with results obtained from models without vector mesons.Comment: LaTeX, 9 pages, 3 figures, to be published in Phys. Rev.

    A time-based Chern number in periodically-driven systems in the adiabatic limit

    Get PDF
    To define the topology of driven systems, recent works have proposed synthetic dimensions as a way to uncover the underlying parameter space of topological invariants. Using time as a synthetic dimension, together with a momentum dimension, gives access to a synthetic 2D Chern number. It is, however, still unclear how the synthetic 2D Chern number is related to the Chern number that is defined from a parametric variable that evolves with time. Here we show that in periodically driven systems in the adiabatic limit, the synthetic 2D Chern number is a multiple of the Chern number defined from the parametric variable. The synthetic 2D Chern number can thus be engineered via how the parametric variable evolves in its own space. We justify our claims by investigating Thouless pumping in two 1D tight-binding models, a three-site chain model and a two-1D-sliding-chains model. The present findings could be extended to higher dimensions and other periodically driven configurations
    • …
    corecore