31,500 research outputs found
Renormalization-group approach to superconductivity: from weak to strong electron-phonon coupling
We present the numerical solution of the renormalization group (RG) equations
derived in Ref. [1], for the problem of superconductivity in the presence of
both electron-electron and electron-phonon coupling at zero temperature. We
study the instability of a Fermi liquid to a superconductor and the RG flow of
the couplings in presence of retardation effects and the crossover from weak to
strong coupling. We show that our numerical results provide an ansatz for the
analytic solution of the problem in the asymptotic limits of weak and strong
coupling.Comment: 8 pages, 3 figures, conference proceedings for the Electron
Correlations and Materials Properties, in Kos, Greece, July 5-9, 200
EffiTest: Efficient Delay Test and Statistical Prediction for Configuring Post-silicon Tunable Buffers
At nanometer manufacturing technology nodes, process variations significantly
affect circuit performance. To combat them, post- silicon clock tuning buffers
can be deployed to balance timing bud- gets of critical paths for each
individual chip after manufacturing. The challenge of this method is that path
delays should be mea- sured for each chip to configure the tuning buffers
properly. Current methods for this delay measurement rely on path-wise
frequency stepping. This strategy, however, requires too much time from ex-
pensive testers. In this paper, we propose an efficient delay test framework
(EffiTest) to solve the post-silicon testing problem by aligning path delays
using the already-existing tuning buffers in the circuit. In addition, we only
test representative paths and the delays of other paths are estimated by
statistical delay prediction. Exper- imental results demonstrate that the
proposed method can reduce the number of frequency stepping iterations by more
than 94% with only a slight yield loss.Comment: ACM/IEEE Design Automation Conference (DAC), June 201
Analyses of composite structures
Stiffness and strength analyses on composite cross-ply and helical wound cylinders and flat laminate structure
Real-time 3D Tracking of Articulated Tools for Robotic Surgery
In robotic surgery, tool tracking is important for providing safe tool-tissue
interaction and facilitating surgical skills assessment. Despite recent
advances in tool tracking, existing approaches are faced with major
difficulties in real-time tracking of articulated tools. Most algorithms are
tailored for offline processing with pre-recorded videos. In this paper, we
propose a real-time 3D tracking method for articulated tools in robotic
surgery. The proposed method is based on the CAD model of the tools as well as
robot kinematics to generate online part-based templates for efficient 2D
matching and 3D pose estimation. A robust verification approach is incorporated
to reject outliers in 2D detections, which is then followed by fusing inliers
with robot kinematic readings for 3D pose estimation of the tool. The proposed
method has been validated with phantom data, as well as ex vivo and in vivo
experiments. The results derived clearly demonstrate the performance advantage
of the proposed method when compared to the state-of-the-art.Comment: This paper was presented in MICCAI 2016 conference, and a DOI was
linked to the publisher's versio
On the Validity of the Tomonaga Luttinger Liquid Relations for the One-dimensional Holstein Model
For the one-dimensional Holstein model, we show that the relations among the
scaling exponents of various correlation functions of the Tomonaga Luttinger
liquid (LL), while valid in the thermodynamic limit, are significantly modified
by finite size corrections. We obtain analytical expressions for these
corrections and find that they decrease very slowly with increasing system
size. The interpretation of numerical data on finite size lattices in terms of
LL theory must therefore take these corrections into account. As an important
example, we re-examine the proposed metallic phase of the zero-temperature,
half-filled one-dimensional Holstein model without employing the LL relations.
In particular, using quantum Monte Carlo calculations, we study the competition
between the singlet pairing and charge ordering. Our results do not support the
existence of a dominant singlet pairing state.Comment: 7 page
Optical Spectroscopic Survey of High-latitude WISE-selected Sources
We report on the results of an optical spectroscopic survey at high Galactic latitude (|b| ≥ 30°) of a sample of WISE-selected targets, grouped by WISE W1 (λ_eff = 3.4 μm) flux, which we use to characterize the sources WISE detected. We observed 762 targets in 10 disjoint fields centered on ultraluminous infrared galaxy candidates using DEIMOS on Keck II. We find 0.30 ± 0.02 galaxies arcmin–2 with a median redshift of z = 0.33 ± 0.01 for the sample with W1 ≥ 120 μJy. The foreground stellar densities in our survey range from 0.23 ± 0.07 arcmin–2 to 1.1 ± 0.1 arcmin–2 for the same sample. We obtained spectra that produced science grade redshifts for ≥90% of our targets for sources with W1 flux ≥120 μJy that also had an i-band flux gsim 18 μJy. We used this for targeting very preliminary data reductions available to the team in 2010 August. Our results therefore present a conservative estimate of what is possible to achieve using WISE's Preliminary Data Release for the study of field galaxies
- …