55,573 research outputs found

    Induced fission of 240Pu

    Full text link
    We study the fission dynamics of 240Pu within an implementation of the Density Functional Theory (DFT) extended to superfluid systems and real-time dynamics. We demonstrate the critical role played by the pairing correlations. The evolution is found to be much slower than previously expected in this fully non-adiabatic treatment of nuclear dynamics, where there are no symmetry restrictions and all collective degrees of freedom (CDOF) are allowed to participate in the dynamics.Comment: 8 pages, 4 figures, talk given at The 6th International Conference on Fission and Properties of Neutron-Rich Nuclei, Sanibel Island, Florida, November 6-2 (2016

    Global Models of Planet Formation and Evolution

    Get PDF
    Despite the increase in observational data on exoplanets, the processes that lead to the formation of planets are still not well understood. But thanks to the high number of known exoplanets, it is now possible to look at them as a population that puts statistical constraints on theoretical models. A method that uses these constraints is planetary population synthesis. Its key element is a global model of planet formation and evolution that directly predicts observable planetary properties based on properties of the natal protoplanetary disk. To do so, global models build on many specialized models that address one specific physical process. We thoroughly review the physics of the sub-models included in global formation models. The sub-models can be classified as models describing the protoplanetary disk (gas and solids), the (proto)planet (solid core, gaseous envelope, and atmosphere), and finally the interactions (migration and N-body interaction). We compare the approaches in different global models and identify physical processes that require improved descriptions in future. We then address important results of population synthesis like the planetary mass function or the mass-radius relation. In these results, the global effects of physical mechanisms occurring during planet formation and evolution become apparent, and specialized models describing them can be put to the observational test. Due to their nature as meta models, global models depend on the development of the field of planet formation theory as a whole. Because there are important uncertainties in this theory, it is likely that global models will in future undergo significant modifications. Despite this, they can already now yield many testable predictions. With future global models addressing the geophysical characteristics, it should eventually become possible to make predictions about the habitability of planets.Comment: 30 pages, 16 figures. Accepted for publication in the International Journal of Astrobiology (Cambridge University Press

    Nuclear Fission: from more phenomenology and adjusted parameters to more fundamental theory and increased predictive power

    Full text link
    Two major recent developments in theory and computational resources created the favorable conditions for achieving a microscopic description of nuclear fission almost eighty years after its discovery in 1939 by Hahn and Strassmann (1930). The first major development was in theory, the extension of the Time-Dependent Density Functional Theory (TDDFT) to superfluid fermion systems. The second development was in computing, the emergence of powerful enough supercomputers capable of solving the complex systems of equations describing the time evolution in three dimensions without any restrictions of hundreds of strongly interacting nucleons. Even though the available nuclear energy density functionals (NEDFs) are phenomenological still, their accuracy is improving steadily and the prospects of being able to perform calculations of the nuclear fission dynamics and to predict many properties of the fission fragments, otherwise not possible to extract from experiments, are within reach, all without making recourse anymore to uncontrollable assumptions and simplified phenomenological models.Comment: 6 pages, account of invited talk given at FUSION17, Hobart, Tasmania, February 20-24, 201

    p-wave Feshbach molecules

    Full text link
    We have produced and detected molecules using a p-wave Feshbach resonance between 40K atoms. We have measured the binding energy and lifetime for these molecules and we find that the binding energy scales approximately linearly with magnetic field near the resonance. The lifetime of bound p-wave molecules is measured to be 1.0 +/- 0.1 ms and 2.3 +/- 0.2 ms for the m_l = +/- 1 and m_l = 0 angular momentum projections, respectively. At magnetic fields above the resonance, we detect quasi-bound molecules whose lifetime is set by the tunneling rate through the centrifugal barrier

    The Signal Estimator Limit Setting Method

    Get PDF
    A new method of background subtraction is presented which uses the concept of a signal estimator to construct a confidence level which is always conservative and which is never better than e^-s. The new method yields stronger exclusions than the Bayesian method with a flat prior distribution

    Higher-order Continuum Approximation for Rarefied Gases

    Full text link
    The Hilbert-Chapman-Enskog expansion of the kinetic equations in mean flight times is believed to be asymptotic rather than convergent. It is therefore inadvisable to use lower order results to simplify the current approximation as is done in the traditional Chapman-Enskog procedure, since that is an iterative method. By avoiding such recycling of lower order results, one obtains macroscopic equations that are asymptotically equivalent to the ones found in the Chapman-Enskog approach. The new equations contain higher order terms that are discarded in the Chapman-Enskog method. These make a significant impact on the results for such problems as ultrasound propagation. In this paper, it is shown that these results turn out well with relatively little complication when the expansions are carried to second order in the mean free time, for the example of the relaxation or BGK model of kinetic theory.Comment: 20 pages, 2 figures, RevTeX 4 macro
    corecore