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Abstract
A new method of background subtraction is presented which uses the concept
of a signal estimator to construct a confidence level which is always conser-
vative and which is never better than ����� . The new method yields stronger
exclusions than theBayesian method with aflat prior distribution.

1. INTRODUCTION

In any search, thepresenceof standard model background will degrade thesensitivity of theanalysisbe-
cause it is impossible to unambiguously seperateeventsoriginating from thesignal process from theex-
pected background events. Although it ispossible, when setting a limit on asignal hypothesis, to assume
that all observed eventscome from thesignal, asearch analyzed in thisway will only beable to exclude
signals which are significantly larger than the background expectation of the analysis. Background sub-
traction isamethod of incorporating knowledgeof thebackground expectation into the interpretation of
search results in order to reduce the impact of Standard Model processeson thesensitivity of thesearch.

The end result of an unsuccessful search is an exclusion confidence for a given signal hypothe-
sis based on the experimental observation. This confidence level

���
	
is associated with a signal and

background expectation and an observation, and is required to be conservative. A conservative confi-
dence level is one in which the False Exclusion rate, or probability that an experiment with signal will
beexcluded, must be less than or equal to

	
, where

	
is called theconfidencecoefficient.

The classical frequentist confidence level is defined such that this probability is equal to
	
. In the

presenceof asufficiently largedownward fluctuation in thebackground observation, however, theclassi-
cal confidence level can exclude arbitrarily small signals. Specifically, for sufficiently large background
expectations, it is possible for an observation to exclude the background hypothesis, in which case, the
classical confidence level will also exclude a signal to which the search is completely insensitive. In
order to prevent thiskind of exclusion, and becausethere isno ambiguity when zero eventsareobserved,
it is required that all methods must default to a confidence level

��� � ��� in order to be “deontologically
correct.” When no events are observed, one should not perform any background subtraction, and

	
, the

probability of observing zero signal events should be just � ��� . Further, any observation of one or more
candidate events should yield a larger value of

	
. This correctness requirement can be easily verified for

any method, and any method which is not deontologically correct should beconsidered too optimistic.

2. BAYESIAN BACKGROUND SUBTRACTION METHOD

A common method of background subtraction[1], based on computing a Bayesian upper limit on the
size of an observed signal given a flat prior distribution, calculates the confidence level

���
	
in terms

of the probabilities that a random repetition of the experiment with the same expectations would yield a
lower number of candidates than the current observation, which observes ���� � . This method computes
thebackground subtracted confidence to be

����� ����	 � �������  ��� � �!���� �#"
��� $�%�!$��� �&" (1)
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where ���  ��� � �!���� �#" istheprobability that anexperiment withsignal expectation ( andbackgroundex-
pectation ) yieldsan equal or lower number of candidatesthan thecurrent observation, and ��� �� �!���� �#"
is the probability that an experiment with background expectation ) yields an equal or lower number of
candidates than thecurrent observation.

When  ��� � is zero, this method reduces to � ��� , demonstrating that it is deontologically correct.
Further, theprobability of observing ���� � eventsor fewer isequal to ���  ��� �%�!$��� �#" , and theconfidence
coefficient for that observation isstrictly larger than theprobability of observing theresult, so thismethod
is conservative.

The method can be extended[2] to incorporate discriminating variables such as the reconstructed
mass or neural network output values by constructing a test-statistic * for the experiment which is some
function of thosediscriminating variables, and constructing theconfidence level as the ratio of probabil-
ities ����� �%��	 � ������� * �+� �%�,*-��� �#"

��� * � �.* ��� � "!/ (2)

where ��� * ��� � �,*0��� �#" is theprobability that an independent experiment with signal expectation ( , back-
ground expectation ) , and some given distributions of discriminating variables yields a value of * less
than or equal to *-��� � seen in the current experiment, and ��� *0� �,*0��� �#" is the probability that an indepen-
dent experiment with background expectation ) and somegiven distributionsof discriminating variables
yields a value of * less than *-��� � seen in the current experiment. If the test-statistic is the number of
observed events, this method reduces to the method described above, though the test-statistic can be
constructed as a likelihood ratio or in some other appropriate way such that larger values of * are more
consistent with theobservation of asignal than lower values.

For an observation of zero eventstheprobabilities �1� * ��� �%�,*-��� �#" and ��� *-�%�,*-��� �&" aresimply the
Poisson probabilitiesof observing zero events in the two cases. Becauseacorrectly defined test-statistic
has its smallest value when and only when there are no events observed, the confidence level for the
generalized version of this method then reduces to thesamevalueas thenumber counting method when
there are no events observed, and it is deontologically correct. Similarly, the probability of observing
a more signal-like test-statistic value is equal to ��� * ��� � �,*0��� �#" , and as ��� *-�%�,*-��� �&" � �

,
	

is always
greater than or equal to this value, so themethod is conservative.

3. SIGNAL ESTIMATOR METHOD

Though the Bayesian method described in Section 2 satisfies the criteria set out in Section 1, it is not
the only background subtraction method which is both conservative and deontologically correct. The
Signal Estimator method satisfies both of these criteria using ��� * ��� �%�,*-��� �&" and a boundary condition
to calculate the confidence level. The boundary condition imposes the correctness requirement on the
confidence level, whilealso making the result conservative.

We wish to determine if a given signal hypothesis ( is excluded. If we could know the observed
test-statistic based on events truly from signal only, which werefer to as thesignal estimator � * � " �2� � , the
confidence level would be rigorously defined as

�3�54 ����	 4 ��� �1� * � � � * � " ��� �#" (3)

where ��� * � � � * � " ��� �#" is the probability that an experiment with signal expectation ( yields a value of
thesignal estimator less than or equal to � * � " ��� � .

Unfortunately, we cannot directly know � * � " �2� � from an experiment as it is not possible to un-
ambiguously determine if an event comes from signal or background. We can only directly know a
test-statistic valuebased on the total observation

*-��� � � � * �+� � " ��� � / (4)
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Although it is not possible to know � * � " ��� � directly, it is still possible to produce an estimate of it, with
which wecan calculateEq. 3. This is most straightforward for test-statistics of the form

* �+� � � * �76 *-� (5)

where ‘ 6 ’ represents asum or product. For example, in simpleevent counting,

* � 
 ��� � �  �98 �� /

In this case, we can use a Monte Carlo simulation of the background expectation to remove the back-
ground contribution in theobserved test-statistic � * ��� � " �2� � , i.e., to estimate � * � " ��� � , and to calculateEq. 3.
In each MonteCarlo experiment, theestimateof � * � " ��� � is defined as

� * � " ��� � � * ��� �9: * �<;>= * ��� �7: * �%? � * � "A@7BDC
� * � "E@7BFC ;>= *-��� � : *-�%� � * � "A@7BDC (6)

where ‘ : ’ represents difference or division, and � * � "E@7BFC is the minimum possible value of the signal
estimator, which corresponds to thephysical boundary (zero signal events).

The confidence level can be computed with Monte Carlo methods in the following way for an
observed test-statistic *-��� � . First, generate a set a Monte Carlo experiments with test-statistic values
distributed as for experiments with the expected background but no signal to determine a distribution of
possible signal estimator values for the observation according to Eq. 8. Next, using a sample of Monte
Carlo with test-statistics distributed as for experiments with signal only, and for each possible signal
estimator value, calculate

	 � * ��� �#G * � " � ��� * � �!H�I#J%K * �2� �9: * � G � * � "A@7BDCML0" / (7)

The value of
	 � * ��� �#G * � " averaged over all of the signal estimator values determined with background

MonteCarlo forms an estimateof ��� * � � � * � " ��� �&" , or

	 4 ��� * � � � * � " ��� �#"ON 	 � *-��� � G *-� " / (8)

The Monte Carlo procedure described above is very slow, and without generalization, it can only
be used for the class of test-statistics which satisfy Eq. 5. The method can be generalized into a much
simpler mathematical format which can be used for any kind of test-statistic. The generalization can
best be illustrated with an example. In the case of simple event counting, the boundary condition for the
signal estimator can be understood intuitively. For an observation of $��� � events, the confidence level is
computed by allowing thebackground to vary freely, and according to Eq. 8, thesignal estimator will be

�  � " ��� � � ���� � � $� ;QP ���� � � �� ?,R
R ;QP ���� � � �� � R /

(9)

Using Eq. 10, onecan easily compute theconfidencecoefficient to be

	 � K ��� $� � R "7S ���  � �!���� �#"
8 ��� �� � � "7S �1�  � �!$��� � ��� " 8 /T/U/8 �1� $� � H "7S �1�  � �!$��� � � H " 8 /U/T/8 ��� �� � ���� �#"7S ���  � � R "VL

8 ��� �� ? $��� �#"7S ���  � � R "� �1�  �+� �%�!��2� �#" 8 K ��� ��� �� �!���� �#"VLWS � ��� / (10)
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This probability reduces to � �YXZ��� �\[ 8 � �3� � � � " � ��� � � ��� when one observes no candidates, so it is
deontologically correct, and becausetheconfidence level isalwaysstrictly greater than �1�  ��� �%�!$��� �#" ,
it is conservative.

In order to compare the performances of this method with the Bayesian method, the confidence
levels for asimpleexperiment areanalyzed in Fig. 1. For thisexample, theanalysis isassumed to expect
three events from a possible signal, and three events from Standard Model background processes. For
both methods, when zero eventsareobserved, theconfidence level reduces to � ��� while for observations
of more events, the signal estimator method yields a lower confidence coefficient, and thus a better
exclusion confidence level. For large numbers of events, ���  � �! ��� � " approaches one, meaning that
both methods approach theclassical confidence level and givevery similar results.
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Fig. 1: A comparison of Signal Estimator method performance to the Bayesian method performance. For an experiment with

three signal and three background events expected, the confidence levels are shown for different numbers of observed events.

TheSignal Estimator method gives either an equal or better confidence level for all possibleobservations.

This method can then be generalized, as the method described in Section 2 was generalized, to
includediscriminating variables. Thenatural generalization takes the form

	 � ��� * ��� � �,*0��� �#" 8 K ��� ��� *0� �,*-��� �#"VLWS � �e� / (11)

For an observation of zero events, thegeneralized method continuesto giveaconfidencelevel � ��� ,
and the confidence level computed with this method is always conservative, with

	
strictly greater than

��� * ��� � �,*0�2� �#" .
Generating Monte Carlo experiments based on a simplified Higgs analysis, one can compare

the performances of the generalized Bayesian method described in Section 2 and the Signal Estima-
tor method. For the comparison it is assumed that there are three events expected from background
processes, with massdistributed uniformly between 70 and 90 GeV/

	2f
, and that thesignal processwould

yield three events, with mass distributed according to a single Gaussian whose width is 2.5 GeV/
	 f

cen-
tered at 80 GeV/

	2f
. Using thetest-statistic described in ref. [3], Fig. 2 showstherelative improvement in
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confidence level for this experiment. The Signal Estimator method is seen to never a worse confidence
level than the generalized Bayesian method. For an observation of zero candidates, and for very signal-
likeobservations(as ��� * � �,* ��� � " approachesone) themethodsconverge. In theregion in between these
extremes, the Signal Estimator method gives confidence levels up to 20% better than the generalized
Bayesian method while remaining conservative.
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Fig. 2: A comparison of Signal Estimator method performance to the generalized Bayesian method performance when dis-

criminating variables are used. The Monte Carlo experiments assume three signal and three background events are expected,

and the single discriminating variable has a Gaussian distribution with width 2.5 GeV/iUj for signal, flat for background over

a range of 20 GeV/iUj . The relative improvement in confidence level using the Signal Estimator method is shown for different

confidence level values.

4. CONCLUSION

More than one method of calculating background subtraction confidence levels which is conservative
and deontologically correct exist. The Signal Estimator method proposed here yields less conservative
limits than the Bayesian method, which should result in an increase in search senstitivity, giving better
limits in unsuccessful searches.
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Discussion after talk of Shan Jin. Chairman: Roger Barlow.

H. Prosper

I didn’t quitecatch your definition of “better” , could you just explain that again please?

S. Jin

Better means that under conservation of coverage, you’ve got a smaller or larger upper limit or
better sensitivity of the limit.

H. Prosper

I’ ll have to think about that.
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