109 research outputs found
Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism
We carried out column model simulations to study particle fluxes and deposition and to evaluate different particle formation mechanisms at a boreal forest site in Finland. We show that kinetic nucleation of sulphuric acid cannot be responsible for new particle formation alone as the simulated vertical profile of particle number concentration does not correspond to observations. Instead organic induced nucleation leads to good agreement confirming the relevance of the aerosol formation mechanism including organic compounds emitted by the biosphere. <br><br> The simulation of aerosol concentration within the atmospheric boundary layer during nucleation event days shows a highly dynamical picture, where particle formation is coupled with chemistry and turbulent transport. We have demonstrated the suitability of our turbulent mixing scheme in reproducing the most important characteristics of particle dynamics within the boundary layer. Deposition and particle flux simulations show that deposition affects noticeably only the smallest particles in the lowest part of the atmospheric boundary layer
An improved criterion for new particle formation in diverse atmospheric environments
A dimensionless theory for new particle formation (NPF) was developed, using an aerosol population balance model incorporating recent developments in nucleation rates and measured particle growth rates. Based on this theoretical analysis, it was shown that a dimensionless parameter <i>L</i><sub>&Gamma;</sub>, characterizing the ratio of the particle scavenging loss rate to the particle growth rate, exclusively determined whether or not NPF would occur on a particular day. This parameter determines the probability that a nucleated particle will grow to a detectable size before being lost by coagulation with the pre-existing aerosol. Cluster-cluster coagulation was shown to contribute negligibly to this survival probability under conditions pertinent to the atmosphere. Data acquired during intensive measurement campaigns in Tecamac (MILAGRO), Atlanta (ANARChE), Boulder, and HyytiÀlÀ (QUEST II, QUEST IV, and EUCAARI) were used to test the validity of <i>L</i><sub>&Gamma;</sub> as an NPF criterion. Measurements included aerosol size distributions down to 3 nm and gas-phase sulfuric acid concentrations. The model was applied to seventy-seven NPF events and nineteen non-events (characterized by growth of pre-existing aerosol without NPF) measured in diverse environments with broad ranges in sulfuric acid concentrations, ultrafine number concentrations, aerosol surface areas, and particle growth rates (nearly two orders of magnitude). Across this diverse data set, a nominal value of <i>L</i><sub>&Gamma;</sub>=0.7 was found to determine the boundary for the occurrence of NPF, with NPF occurring when <i>L</i><sub>&Gamma;</sub><0.7 and being suppressed when <i>L</i><sub>&Gamma;</sub>>0.7. Moreover, nearly 45% of measured <i>L</i><sub>&Gamma;</sub> values associated with NPF fell in the relatively narrow range of 0.1<<i>L</i><sub>&Gamma;</sub><0.3
New particle formation in air mass transported between two measurement sites in Northern Finland
This study covers four years of aerosol number size distribution data from Pallas and VÀrriö sites 250 km apart from each other in Northern Finland and compares new particle formation events between these sites. In air masses of eastern origin almost all events were observed to start earlier at the eastern station VÀrriö, whereas in air masses of western origin most of the events were observed to start earlier at the western station Pallas. This demonstrates that particle formation in a certain air mass type depends not only on the diurnal variation of the parameters causing the phenomenon (such as photochemistry) but also on some properties carried by the air mass itself. The correlation in growth rates between the two sites was relatively good, which suggests that the amount of condensable vapour causing the growth must have been at about the same level in both sites. The condensation sink was frequently much higher at the downwind station. It seems that secondary particle formation related to biogenic sources dominate in many cases over the particle sinks during the air mass transport between the sites. Two cases of transport from Pallas to VÀrriö were further analysed with an aerosol dynamics model. The model was able to reproduce the observed nucleation events 250 km down-wind at VÀrriö but revealed some differences between the two cases. The simulated nucleation rates were in both cases similar but the organic concentration profiles that best reproduced the observations were different in the two cases indicating that divergent formation reactions may dominate under different conditions. The simulations also suggested that organic compounds were the main contributor to new particle growth, which offers a tentative hypothesis to the distinct features of new particles at the two sites: Air masses arriving from the Atlantic Ocean typically spent approximately only ten hours over land before arriving at Pallas, and thus the time for the organic vapours to accumulate in the air and to interact with the particles is relatively short. This can lead to low nucleation mode growth rates and even to suppression of detectable particle formation event due to efficient scavenging of newly formed clusters, as was observed in the case studies
The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales
International audienceThe contribution of boundary layer (BL) nucleation events to total particle concentrations on the global scale has been studied by including a new particle formation mechanism in a global aerosol microphysics model. The mechanism is based on an analysis of extensive observations of particle formation in the BL at a continental surface site. It assumes that molecular clusters form at a rate proportional to the gaseous sulfuric acid concentration to the power of 1. The formation rate of 3 nm diameter observable particles is controlled by the cluster formation rate and the existing particle surface area, which acts to scavenge condensable gases and clusters during growth. Modelled sulfuric acid vapour concentrations, particle formation rates, growth rates, coagulation loss rates, peak particle concentrations, and the daily timing of events in the global model agree well with observations made during a 22-day period of March 2003 at the SMEAR II station in HyytiÀlÀ, Finland. The nucleation bursts produce total particle concentrations (>3 nm diameter) often exceeding 104 cm?3, which are sustained for a period of several hours around local midday. The predicted global distribution of particle formation events broadly agrees with what is expected from available observations. Over relatively clean remote continental locations formation events can sustain mean total particle concentrations up to a factor of 8 greater than those resulting from anthropogenic sources of primary organic and black carbon particles. However, in polluted continental regions anthropogenic primary particles dominate particle number and formation events lead to smaller enhancements of up to a factor of 2. Our results therefore suggest that particle concentrations in remote continental regions are dominated by nucleated particles while concentrations in polluted continental regions are dominated by primary particles. The effect of BL particle formation over tropical regions and the Amazon is negligible. These first global particle formation simulations reveal some interesting sensitivities. We show, for example, that significant reductions in primary particle emissions may lead to an increase in total particle concentration because of the coupling between particle surface area and the rate of new particle formation. This result suggests that changes in emissions may have a complicated effect on global and regional aerosol properties. Overall, our results show that new particle formation is a significant component of the aerosol particle number budget
Aerosol dynamics simulations on the connection of sulphuric acid and new particle formation
International audienceWe have performed a series of simulations with an aerosol dynamics box model to study the connection between new particle formation and sulphuric acid concentration. For nucleation either activation mechanism with a linear dependence on the sulphuric acid concentration or ternary H2O-H2SO4-NH3 nucleation was assumed. We investigated the factors that affect the sulphuric acid dependence during the early stages of particle growth, and tried to find conditions which would yield the linear dependence between the particle number concentration at 3?6 nm and sulphuric acid, as observed in field experiments. The simulations showed that the correlation with sulphuric acid may change during the growth from nucleation size to 3?6 nm size range, the main reason being the size dependent growth rate between 1 and 3 nm. In addition, the assumed size for the nucleated clusters had a crucial impact on the sulphuric acid dependence at 3 nm. The simulations yielded a linear dependence between the particle number concentration at 3 nm and sulphuric acid, when a low saturation vapour pressure for the condensable organic vapour was assumed, or when nucleation took place at ~2 nm instead of ~1 nm. Comparison of results with activation and ternary nucleation showed that ternary nucleation cannot explain the experimentally observed linear or square dependence on sulphuric acid
Connections between atmospheric sulphuric acid and new particle formation during QUEST III–IV campaigns in Heidelberg and HyytiĂ€lĂ€
This study investigates the connections between atmospheric sulphuric acid and new particle formation during QUEST III and BACCI/QUEST IV campaigns. The campaigns have been conducted in Heidelberg (2004) and HyytiĂ€lĂ€ (2005), the first representing a polluted site surrounded by deciduous forest, and the second a rural site in a boreal forest environment. We have studied the role of sulphuric acid in particle formation and growth by determining 1) the power-law dependencies between sulphuric acid ([H<sub>2</sub>SO<sub>4</sub>]), and particle concentrations (<I>N</I><sub>3–6</sub>) or formation rates at 1 nm and 3 nm (<I>J</i><sub>1</sub> and <I>J</I><sub>3</sub>); 2) the time delays between [H<sub>2</sub>SO<sub>4</sub>] and <I>N</I><sub>3–6</sub> or <I>J</I><sub>3</sub>, and the growth rates for 1–3 nm particles; 3) the empirical nucleation coefficients <I>A</I> and <I>K</I> in relations <I>J</I><sub>1</sub>=<I>A</I>[H<sub>2</sub>SO<sub>4</sub>] and <I>J</I><sub>1</sub>=<I>K</I>[H<sub>2</sub>SO<sub>4</sub>]<sup>2</sup>, respectively; 4) theoretical predictions for <I>J</I><sub>1</sub> and <I>J</I><sub>3</sub> for the days when no significant particle formation is observed, based on the observed sulphuric acid concentrations and condensation sinks. In both environments, <I>N</I><sub>3–6</sub> or <I>J</I><sub>3</sub> and [H<sub>2</sub>SO<sub>4</sub>] were linked via a power-law relation with exponents typically ranging from 1 to 2. The result suggests that the cluster activation theory and kinetic nucleation have the potential to explain the observed particle formation. However, some differences between the sites existed: The nucleation coefficients were about an order of magnitude greater in Heidelberg than in HyytiĂ€lĂ€ conditions. The time lags between <I>J</I><sub>3</sub> and [H<sub>2</sub>SO<sub>4</sub>] were consistently lower than the corresponding delays between <I>N</I><sub>3–6</sub> and [H<sub>2</sub>SO<sub>4</sub>]. The exponents in the <I>J</I><sub>3</sub>∝[H<sub>2</sub>SO<sub>4</sub> ]<sup>n<sub>J3</sub></sup>-connection were consistently higher than or equal to the exponents in the relation <I>N</I><sub>3–6</sub>∝[H<sub>2</sub>SO<sub>4</sub> ]<sup>n<sub>N36</sub></sup>. In the <I>J</I><sub>1</sub> values, no significant differences were found between the observed rates on particle formation event days and the predictions on non-event days. The <I>J</I><sub>3</sub> values predicted by the cluster activation or kinetic nucleation hypotheses, on the other hand, were considerably lower on non-event days than the rates observed on particle formation event days. This study provides clear evidence implying that the main process limiting the observable particle formation is the competition between the growth of the freshly formed particles and their loss by scavenging, rather than the initial particle production by nucleation of sulphuric acid. In general, it can be concluded that the simple models based on sulphuric acid concentrations and particle formation by cluster activation or kinetic nucleation can predict the occurence of atmospheric particle formation and growth well, if the particle scavenging is accurately accounted for
Long-term prognosis of breast cancer detected by mammography screening or other methods
Introduction
Previous studies on breast cancer have shown that patients whose tumors are detected by mammography screening have a more favorable survival. However, little is known about the long-term prognostic impact of screen-detection. The purpose of the current study was to compare breast cancer-specific long-term survival between patients whose tumors were detected in mammography screening and those detected by other methods.
Methods
Breast cancer patients diagnosed within five specified geographical areas in Finland in 1991-92 were identified (n=2,936). Detailed clinical, treatment and outcome data as well as tissue samples were collected. Women with in situ carcinoma, distant metastases at the primary diagnosis and women who were not operated were excluded. Main analyses were made with exclusions of patients with other malignancy or contralateral breast cancer followed by to sensitivity analyses with different exclusion criterias. Median follow-up time was 15.4 years. Univariate and multivariate analysis of breast cancer-specific survival were performed.
Results
Of patients included in the main analyses (n=1,884) 22% (n=408) were screen-detected and 78% (n=1,476) were detected by other methods. Breast cancer-specific 15-year survival was 86% for patients with screen-detected cancer and 66% for patients diagnosed by other methods (p<0.0001, HR=2.91). Similar differences in survival were also observed in women at screening age (50-69 years) as well as in clinically important subgroups, such as patients with small tumors ([less than or equal to]1cm in diameter) and without nodal involvement (N0). Women with breast cancer diagnosed by screening mammography had a more favorable prognosis compared to those diagnosed outside of screening program following adjustments according to patient age, tumor size, axillary lymph node status, histological grade and hormone receptor status. Significant differences in the risk of having future contralateral breast cancer according to method of detection was not observed .
Conclusions
Breast cancer detection in mammography screening is an independent prognostic factor in breast cancer and is associated with a more favorable survival also in long-term follow-up.BioMed Central open acces
Quantitative Analysis of Viral Load per Haploid Genome Revealed the Different Biological Features of Merkel Cell Polyomavirus Infection in Skin Tumor
Merkel cell polyomavirus (MCPyV) has recently been identified in Merkel cell carcinoma (MCC), an aggressive cancer that occurs in sun-exposed skin. Conventional technologies, such as polymerase chain reaction (PCR) and immunohistochemistry, have produced conflicting results for MCPyV infections in non-MCC tumors. Therefore, we performed quantitative analyses of the MCPyV copy number in various skin tumor tissues, including MCC (nâ=â9) and other sun exposure-related skin tumors (basal cell carcinoma [BCC, nâ=â45], actinic keratosis [AK, nâ=â52], Bowenâs disease [nâ=â34], seborrheic keratosis [nâ=â5], primary cutaneous anaplastic large-cell lymphoma [nâ=â5], malignant melanoma [nâ=â5], and melanocytic nevus [nâ=â6]). In a conventional PCR analysis, MCPyV DNA was detected in MCC (9 cases; 100%), BCC (1 case; 2%), and AK (3 cases; 6%). We then used digital PCR technology to estimate the absolute viral copy number per haploid human genome in these tissues. The viral copy number per haploid genome was estimated to be around 1 in most MCC tissues, and there were marked differences between the MCC (0.119â42.8) and AK (0.02â0.07) groups. PCR-positive BCC tissue showed a similar viral load as MCC tissue (0.662). Immunohistochemistry with a monoclonal antibody against the MCPyV T antigen (CM2B4) demonstrated positive nuclear localization in most of the high-viral-load tumor groups (8 of 9 MCC and 1 BCC), but not in the low-viral-load or PCR-negative tumor groups. These results demonstrated that MCPyV infection is possibly involved in a minority of sun-exposed skin tumors, including BCC and AK, and that these tumors display different modes of infection
Overexpression of circulating MiR-30b-5p identifies advanced breast cancer
Breast cancer (BrC) remains the leading cause of cancer-related death in women, mainly due to recurrent and/or metastatic events, entailing the need for biomarkers predictive of progression to advanced disease. MicroRNAs hold promise as noninvasive cancer biomarkers due to their inherent stability and resilience in tissues and bodily fluids. There is increasing evidence that specific microRNAs play a functional role at different steps of the metastatic cascade, behaving as signaling mediators to enable the colonization of a specific organ. Herein, we aimed to evaluate the biomarker performance of microRNAs previously reported as associated with prognosis for predicting BrC progression in liquid biopsies. Background
Breast cancer (BrC) remains the leading cause of cancer-related death in women, mainly due to recurrent and/or metastatic events, entailing the need for biomarkers predictive of progression to advanced disease. MicroRNAs hold promise as noninvasive cancer biomarkers due to their inherent stability and resilience in tissues and bodily fluids. There is increasing evidence that specific microRNAs play a functional role at different steps of the metastatic cascade, behaving as signaling mediators to enable the colonization of a specific organ. Herein, we aimed to evaluate the biomarker performance of microRNAs previously reported as associated with prognosis for predicting BrC progression in liquid biopsies.
Methods
Selected microRNAs were assessed using a quantitative reverse transcription-polymerase chain reaction in a testing cohort of formalin-fixed paraffin-embedded primary (nâ=â16) and metastatic BrC tissues (nâ=â22). Then, miR-30b-5p and miR-200b-3p were assessed in a validation cohort #1 of formalin-fixed paraffin-embedded primary (nâ=â82) and metastatic BrC tissues (nâ=â93), whereas only miR-30b-5p was validated on a validation cohort #2 of liquid biopsies from BrC patients with localized (nâ=â20) and advanced (nâ=â25) disease. ROC curve was constructed to evaluate prognostic performance.
Results
MiR-30b-5p was differentially expressed in primary tumors and paired metastatic lesions, with bone metastases displaying significantly higher miR-30b-5p expression levels, paralleling the corresponding primary tumors. Interestingly, patients with advanced disease disclosed increased circulating miR-30b-5p expression compared to patients with localized BrC.
Conclusions
MiR-30b-5p might identify BrC patients at higher risk of disease progression, thus, providing a useful clinical tool for patientsâ monitoring, entailing earlier and more effective treatment. Nonetheless, validation in larger multicentric cohorts is mandatory to confirm these findings.Research Center of Portuguese
Oncology Institute of Porto (PI 74-CI-IPOP-19-2016). JL and CSG are supported
by a PhD fellowship from FCT - Fundação para a CiĂȘncia e Tecnologia (SFRH/
BD/132751/2017 and SFRH/BD/92786/2013, respectively). SS is supported by
a PhD fellowship IPO/ESTIMA-1 NORTE-01-0145-FEDER-000027. BMC is funded
by FCT-Fundação para a CiĂȘncia e a Tecnologia (IF/00601/2012
Positive correlation between Merkel cell polyomavirus viral load and capsid-specific antibody titer
Merkel cell polyomavirus (MCPyV or MCV) is the first polyomavirus to be clearly implicated as a causal agent underlying a human cancer, Merkel cell carcinoma (MCC). Infection with MCPyV is common in the general population, and a majority of adults shed MCPyV from the surface of their skin. In this study, we quantitated MCPyV DNA in skin swab specimens from healthy volunteers sampled at different anatomical sites over time periods ranging from 3Â months to 4Â years. The volunteers were also tested using a serological assay that detects antibodies specific for the MCPyV virion. There was a positive correlation between MCPyV virion-specific antibody titers and viral load at all anatomical sites tested (dorsal portion of the hands, forehead, and buttocks) (Spearmanâs r 0.644, PÂ <Â 0.0001). The study results are consistent with previous findings suggesting that the skin is primary site of chronic MCPyV infection in healthy adults and suggest that the magnitude of an individualâs seroresponsiveness against the MCPyV virion generally reflects the overall MCPyV DNA load across wide areas of the skin. In light of previous reports indicating a correlation between MCC and strong MCPyV-specific seroresponsiveness, this model suggests that poorly controlled chronic MCPyV infection might be a risk factor in the development of MCC
- âŠ