2,319 research outputs found
An order-N electronic structure theory with generalized eigenvalue equations and its application to a ten-million-atom system
A linear-algebraic theory called 'multiple Arnoldi method' is presented and
realizes large-scale (order-N) electronic structure calculation with
generalized eigen-value equations. A set of linear equations, in the form of
(zS-H) x = b, are solved simultaneously with multiple Krylov subspaces. The
method is implemented in a simulation package ELSES (http://www.elses.jp) with
tight-binding-form Hamiltonians. A finite-temperature molecular dynamics
simulation is carried out for metallic and insulating materials. A calculation
with atoms was realized by a workstation. The parallel efficiency is
shown upto 1,024 CPU cores.Comment: 9 pages, 3 figures. To appear in J. Phys.: Condens. Matte
Dynamical brittle fractures of nanocrystalline silicon using large-scale electronic structure calculations
A hybrid scheme between large-scale electronic structure calculations is
developed and applied to nanocrystalline silicon with more than 10 atoms.
Dynamical fracture processes are simulated under external loads in the [001]
direction. We shows that the fracture propagates anisotropically on the (001)
plane and reconstructed surfaces appear with asymmetric dimers. Step structures
are formed in larger systems, which is understood as the beginning of a
crossover between nanoscale and macroscale samples.Comment: 10 pages, 4 figure
Linear Algebraic Calculation of Green's function for Large-Scale Electronic Structure Theory
A linear algebraic method named the shifted
conjugate-orthogonal-conjugate-gradient method is introduced for large-scale
electronic structure calculation. The method gives an iterative solver
algorithm of the Green's function and the density matrix without calculating
eigenstates.The problem is reduced to independent linear equations at many
energy points and the calculation is actually carried out only for a single
energy point. The method is robust against the round-off error and the
calculation can reach the machine accuracy. With the observation of residual
vectors, the accuracy can be controlled, microscopically, independently for
each element of the Green's function, and dynamically, at each step in
dynamical simulations. The method is applied to both semiconductor and metal.Comment: 10 pages, 9 figures. To appear in Phys. Rev. B. A PDF file with
better graphics is available at http://fujimac.t.u-tokyo.ac.jp/lses
Timesaving Double-Grid Method for Real-Space Electronic-Structure Calculations
We present a simple and efficient technique in ab initio electronic-structure
calculation utilizing real-space double-grid with a high density of grid points
in the vicinity of nuclei. This technique promises to greatly reduce the
overhead for performing the integrals that involves non-local parts of
pseudopotentials, with keeping a high degree of accuracy. Our procedure gives
rise to no Pulay forces, unlike other real-space methods using adaptive
coordinates. Moreover, we demonstrate the potential power of the method by
calculating several properties of atoms and molecules.Comment: 4 pages, 5 figure
Elaboration and characterization of Fe1–xO thin films sputter deposited from magnetite target
Majority of the authors report elaboration of iron oxide thin films by reactive magnetron sputtering from an iron target with Ar–O2 gas mixture. Instead of using the reactive sputtering of a metallic target we report here the preparation of Fe1–xOthin films, directly sputtered froma magnetite target in a pure argon gas flow with a bias power applied. This oxide is generally obtained at very low partial oxygen pressure and high temperature.We showed that bias sputtering which can be controlled very easily can lead to reducing conditions during deposition of oxide thin film on simple glass substrates. The proportion of wustite was directly adjusted bymodifying the power of the substrate polarization. Atomic force microscopy was used to observe these nanostructured layers. Mössbauer measurements and electrical properties versus bias polarization and annealing temperature are also reported
Efficient and Accurate Linear Algebraic Methods for Large-scale Electronic Structure Calculations with Non-orthogonal Atomic Orbitals
The need for large-scale electronic structure calculations arises recently in
the field of material physics and efficient and accurate algebraic methods for
large simultaneous linear equations become greatly important. We investigate
the generalized shifted conjugate orthogonal conjugate gradient method, the
generalized Lanczos method and the generalized Arnoldi method. They are the
solver methods of large simultaneous linear equations of one-electron
Schr\"odinger equation and maps the whole Hilbert space to a small subspace
called the Krylov subspace. These methods are applied to systems of fcc Au with
the NRL tight-binding Hamiltonian (Phys. Rev. B {\bf 63}, 195101 (2001)). We
compare results by these methods and the exact calculation and show them
equally accurate. The system size dependence of the CPU time is also discussed.
The generalized Lanczos method and the generalized Arnoldi method are the most
suitable for the large-scale molecular dynamics simulations from the view point
of CPU time and memory size.Comment: 13pages, 7figure
From nonwetting to prewetting: the asymptotic behavior of 4He drops on alkali substrates
We investigate the spreading of 4He droplets on alkali surfaces at zero
temperature, within the frame of Finite Range Density Functional theory. The
equilibrium configurations of several 4He_N clusters and their asymptotic trend
with increasing particle number N, which can be traced to the wetting behavior
of the quantum fluid, are examined for nanoscopic droplets. We discuss the size
effects, inferring that the asymptotic properties of large droplets correspond
to those of the prewetting film
O(N) methods in electronic structure calculations
Linear scaling methods, or O(N) methods, have computational and memory
requirements which scale linearly with the number of atoms in the system, N, in
contrast to standard approaches which scale with the cube of the number of
atoms. These methods, which rely on the short-ranged nature of electronic
structure, will allow accurate, ab initio simulations of systems of
unprecedented size. The theory behind the locality of electronic structure is
described and related to physical properties of systems to be modelled, along
with a survey of recent developments in real-space methods which are important
for efficient use of high performance computers. The linear scaling methods
proposed to date can be divided into seven different areas, and the
applicability, efficiency and advantages of the methods proposed in these areas
is then discussed. The applications of linear scaling methods, as well as the
implementations available as computer programs, are considered. Finally, the
prospects for and the challenges facing linear scaling methods are discussed.Comment: 85 pages, 15 figures, 488 references. Resubmitted to Rep. Prog. Phys
(small changes
Monitoring Voltage-Dependent Charge Displacement of Shaker B-IR K+ Ion Channels Using Radio Frequency Interrogation
Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz) electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR) K+ ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC) was applied to command whole-cell membrane potential and to measure channel-dependent membrane currents. Simultaneously, RF electric fields were applied to perturb the membrane potential about the TEVC level and to measure voltage-dependent RF displacement currents. ShB-IR expressing oocytes showed significantly larger changes in RF displacement currents upon membrane depolarization than control oocytes. Voltage-dependent changes in RF displacement currents further increased in ShB-IR expressing oocytes after ∼120 µM Cu2+ addition to the external bath. Cu2+ is known to bind to the ShB-IR ion channel and inhibit Shaker K+ conductance, indicating that changes in the RF displacement current reported here were associated with RF vibration of the Cu2+-linked mobile domain of the ShB-IR protein. Results demonstrate the use of extracellular RF electrodes to interrogate voltage-dependent movement of charged mobile protein domains — capabilities that might enable detection of small changes in charge distribution associated with integral membrane protein conformation and/or drug–protein interactions
- …