21,055 research outputs found

    Spiers Memorial Lecture. Next generation nanoelectrochemistry: the fundamental advances needed for applications

    Full text link
    Nanoelectrochemistry, where electrochemical processes are controlled and investigated with nanoscale resolution, is gaining more and more attention because of the many potential applications in energy and sensing and the fact that there is much to learn about fundamental electrochemical processes when we explore them at the nanoscale. The development of instrumental methods that can explore the heterogeneity of electrochemistry occurring across an electrode surface, monitoring single molecules or many single nanoparticles on a surface simultaneously, have been pivotal in giving us new insights into nanoscale electrochemistry. Equally important has been the ability to synthesise or fabricate nanoscale entities with a high degree of control that allows us to develop nanoscale devices. Central to the latter has been the incredible advances in nanomaterial synthesis where electrode materials with atomic control over electrochemically active sites can be achieved. After introducing nanoelectrochemistry, this paper focuses on recent developments in two major application areas of nanoelectrochemistry; electrocatalysis and using single entities in sensing. Discussion of the developments in these two application fields highlights some of the advances in the fundamental understanding of nanoelectrochemical systems really driving these applications forward. Looking into our nanocrystal ball, this paper then highlights: the need to understand the impact of nanoconfinement on electrochemical processes, the need to measure many single entities, the need to develop more sophisticated ways of treating the potentially large data sets from measuring such many single entities, the need for more new methods for characterising nanoelectrochemical systems as they operate and the need for material synthesis to become more reproducible as well as possess more nanoscale control

    Rapid and ultrasensitive electrochemical detection of circulating tumor DNA by hybridization on the network of gold-coated magnetic nanoparticles

    Full text link
    An accurate and robust method for quantifying the levels of circulating tumor DNA (ctDNA) is vital if this potential biomarker is to be used for the early diagnosis of cancer. The analysis of ctDNA presents unique challenges because of its short half-life and ultralow abundance in early stage cancers. Here we develop an ultrasensitive electrochemical biosensor for rapid detection of ctDNA in whole blood. The sensing of ctDNA is based on hybridization on a network of probe DNA modified gold-coated magnetic nanoparticles (DNA-Au@MNPs). This DNA-Au@MNPs biosensor can selectively detect short- and long-strand DNA targets. It has a broad dynamic range (2 aM to 20 nM) for 22 nucleotide DNA target with an ultralow detection limit of 3.3 aM. For 101 nucleotide ctDNA target, a dynamic range from 200 aM to 20 nM was achieved with a detection limit of 5 fM. This DNA-Au@MNPs based sensor provides a promising method to achieve 20 min response time and minimally invasive cancer early diagnosis

    Sorafenib dose escalation is not uniformly associated with blood pressure elevations in normotensive patients with advanced malignancies.

    Get PDF
    Hypertension after treatment with vascular endothelial growth factor (VEGF) receptor inhibitors is associated with superior treatment outcomes for advanced cancer patients. To determine whether increased sorafenib doses cause incremental increases in blood pressure (BP), we measured 12-h ambulatory BP in 41 normotensive advanced solid tumor patients in a randomized dose-escalation study. After 7 days' treatment (400 mg b.i.d.), mean diastolic BP (DBP) increased in both study groups. After dose escalation, group A (400 mg t.i.d.) had marginally significant further increase in 12-h mean DBP (P = 0.053), but group B (600 mg b.i.d.) did not achieve statistically significant increases (P = 0.25). Within groups, individuals varied in BP response to sorafenib dose escalation, but these differences did not correlate with changes in steady-state plasma sorafenib concentrations. These findings in normotensive patients suggest BP is a complex pharmacodynamic biomarker of VEGF inhibition. Patients have intrinsic differences in sensitivity to sorafenib's BP-elevating effects

    Exploring the Effect of Crowd Management Measures on Passengers’ Behaviour at Metro Stations

    Get PDF
    To reduce problems of interaction at the platform train interface (PTI) platform edge doors (PEDs) and markings on the platform are used as door positions indicators. The common methods to study the effect of these measures are based on average values of density using Fruin’s Level of Service (LOS), however identification cannot be made of which part of the PTI is more congested. To solve this problem, a new method is proposed. The method included a conceptual model in which the PTI was discretised into 40 cm square cells to identify which part of the platform is more congested. Passengers’ behaviour was recorded considering two situations before the train arrives: i) passengers waiting in front of the doors; ii) passengers waiting beside the doors. Observation was done at existing stations at Metro de Santiago and London Underground. Results show that PEDs changed the behaviour of passengers as they were located beside the doors rather than in front of them. In addition, when markings were used on the platform, then this behaviour was reinforced. Therefore, it is recommended to use this method to better design the PTI rather than the LOS which is used to design the whole platform. Further research is needed to study the effect of PEDs on passengers with reduced mobility

    Transfer Functions for Protein Signal Transduction: Application to a Model of Striatal Neural Plasticity

    Get PDF
    We present a novel formulation for biochemical reaction networks in the context of signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of 'source' species, which receive input signals. Signals are transmitted to all other species in the system (the 'target' species) with a specific delay and transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and recalled to build discrete dynamical models. By separating reaction time and concentration we can greatly simplify the model, circumventing typical problems of complex dynamical systems. The transfer function transformation can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant insight, while remaining an executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modules that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. We also found that overall interconnectedness depends on the magnitude of input, with high connectivity at low input and less connectivity at moderate to high input. This general result, which directly follows from the properties of individual transfer functions, contradicts notions of ubiquitous complexity by showing input-dependent signal transmission inactivation.Comment: 13 pages, 5 tables, 15 figure

    Can becoming a leader change your personality? An investigation with two longitudinal studies from a role-based perspective

    Get PDF
    Organizational research has predominantly adopted the classic dispositional perspective to understand the importance of personality traits in shaping work outcomes. However, the burgeoning literature in personality psychology has documented that personality traits, although relatively stable, are able to develop throughout one’s whole adulthood. A crucial force driving adult personality development is transition into novel work roles. In this article, we introduce a dynamic, role-based perspective on the adaptive nature of personality during the transition from the role of employee to that of leader (i.e., leadership emergence). We argue that during such role transitions, individuals will experience increases in job role demands, a crucial manifestation of role expectations, which in turn may foster growth in conscientiousness and emotional stability. We tested these hypotheses in two 3-wave longitudinal studies using a quasi-experimental design. We compared the personality development of 2 groups of individuals (1 group promoted from employees into leadership roles and the other remaining as employees over time), matched via the propensity score matching approach. The convergent results of latent growth curve modeling from the 2 studies support our hypotheses regarding the relationship between becoming a leader and subsequent small, but substantial increases in conscientiousness over time and the mediating role of job role demands. The relationship between becoming a leader and change of emotional stability was not significant. This research showcases the prominence of examining and cultivating personality development for organizational research and practice

    A Physiologically Responsive Nanocomposite Hydrogel for Treatment of Head and Neck Squamous Cell Carcinoma via Proteolysis-Targeting Chimeras Enhanced Immunotherapy

    Full text link
    Although immunotherapy has revolutionized oncotherapy, only ≈15% of head and neck squamous cell carcinoma (HNSCC) patients benefit from the current therapies. An immunosuppressive tumor microenvironment (TME) and dysregulation of the polycomb ring finger oncogene BMI1 are potential reasons for the failure. Herein, to promote immunotherapeutic efficacy against HNSCC, an injectable nanocomposite hydrogel is developed with a polymer framework (PLGA-PEG-PLGA) that is loaded with both imiquimod encapsulated CaCO3 nanoparticles (RC) and cancer cell membrane (CCM)-coated mesoporous silica nanoparticles containing a peptide-based proteolysis-targeting chimeras (PROTAC) for BMI1 and paclitaxel (PepM@PacC). Upon injection, this nanocomposite hydrogel undergoes in situ gelation, after which it degrades in the TME over time, releasing RC and PepM@PacC nanoparticles to respectively perform immunotherapy and chemotherapy. Specifically, the RC particles selectively manipulate tumor-associated macrophages and dendritic cells to activate a T-cell immune response, while CCM-mediated homologous targeting and endocytosis delivers the PepM@PacC particles into cancer cells, where endogenous glutathione promotes disulfide bond cleavage to release the PROTAC peptide for BMI1 degradation and frees the paclitaxel from the particle pores to elicit apoptosis meanwhile enhance immunotherapy. Thus, the nanocomposite hydrogel, which is designed to exploit multiple known vulnerabilities of HNSCC, succeeds in suppressing both growth and metastasis of HNSCC

    Control of Emi2 activity and stability through Mos-mediated recruitment of PP2A.

    Get PDF
    Before fertilization, vertebrate eggs are arrested in meiosis II by cytostatic factor (CSF), which holds the anaphase-promoting complex (APC) in an inactive state. It was recently reported that Mos, an integral component of CSF, acts in part by promoting the Rsk-mediated phosphorylation of the APC inhibitor Emi2/Erp1. We report here that Rsk phosphorylation of Emi2 promotes its interaction with the protein phosphatase PP2A. Emi2 residues adjacent to the Rsk phosphorylation site were important for PP2A binding. An Emi2 mutant that retained Rsk phosphorylation but lacked PP2A binding could not be modulated by Mos. PP2A bound to Emi2 acted on two distinct clusters of sites phosphorylated by Cdc2, one responsible for modulating its stability during CSF arrest and one that controls binding to the APC. These findings provide a molecular mechanism for Mos action in promoting CSF arrest and also define an unusual mechanism, whereby protein phosphorylation recruits a phosphatase for dephosphorylation of distinct sites phosphorylated by another kinase
    • …
    corecore