3,885 research outputs found

    Development of PAN (personal area network) for Mobile Robot Using Bluetooth Transceiver

    Get PDF
    In recent years, wireless applications using radio frequency (RF) have been rapidly evolving in personal computing and communications devices. Bluetooth technology was created to replace the cables used on mobile devices. Bluetooth is an open specification and encompasses a simple low-cost, low power solution for integration into devices. This research work aim was to provide a PAN (personal area network) for computer based mobile robot that supports real-time control of four mobile robots from a host mobile robot. With ad hoc topology, mobile robots may request and establish a connection when it is within the range or terminated the connection when it leaves the area. A system that contains both hardware and software is designed to enable the robots to participate in multi-agent robotics system (MARS). Computer based mobile robot provide operating system that enabled development of wireless connection via IP address

    Chemical Raman Enhancement of Organic Adsorbates on Metal Surfaces

    Get PDF
    Using a combination of first-principles theory and experiments, we provide a quantitative explanation for chemical contributions to surface-enhanced Raman spectroscopy for a well-studied organic molecule, benzene thiol, chemisorbed on planar Au(111) surfaces. With density functional theory calculations of the static Raman tensor, we demonstrate and quantify a strong mode-dependent modification of benzene thiol Raman spectra by Au substrates. Raman active modes with the largest enhancements result from stronger contributions from Au to their electron-vibron coupling, as quantified through a deformation potential, a well-defined property of each vibrational mode. A straightforward and general analysis is introduced that allows extraction of chemical enhancement from experiments for specific vibrational modes; measured values are in excellent agreement with our calculations.Comment: 5 pages, 4 figures and Supplementary material included as ancillary fil

    Dynamics of axial separation in long rotating drums

    Full text link
    We propose a continuum description for the axial separation of granular materials in a long rotating drum. The model, operating with two local variables, concentration difference and the dynamic angle of repose, describes both initial transient traveling wave dynamics and long-term segregation of the binary mixture. Segregation proceeds through ultra-slow logarithmic coarsening.Comment: 4 pages, 3 Postscript figures; submitted to PR

    Exact Inference on Gaussian Graphical Models of Arbitrary Topology using Path-Sums

    Full text link
    We present the path-sum formulation for exact statistical inference of marginals on Gaussian graphical models of arbitrary topology. The path-sum formulation gives the covariance between each pair of variables as a branched continued fraction of finite depth and breadth. Our method originates from the closed-form resummation of infinite families of terms of the walk-sum representation of the covariance matrix. We prove that the path-sum formulation always exists for models whose covariance matrix is positive definite: i.e.~it is valid for both walk-summable and non-walk-summable graphical models of arbitrary topology. We show that for graphical models on trees the path-sum formulation is equivalent to Gaussian belief propagation. We also recover, as a corollary, an existing result that uses determinants to calculate the covariance matrix. We show that the path-sum formulation formulation is valid for arbitrary partitions of the inverse covariance matrix. We give detailed examples demonstrating our results

    Laser-based three-dimensional manufacturing technologies for rechargeable batteries.

    Full text link
    Laser three-dimensional (3D) manufacturing technologies have gained substantial attention to fabricate 3D structured electrochemical rechargeable batteries. Laser 3D manufacturing techniques offer excellent 3D microstructure controllability, good design flexibility, process simplicity, and high energy and cost efficiencies, which are beneficial for rechargeable battery cell manufacturing. In this review, notable progress in development of the rechargeable battery cells via laser 3D manufacturing techniques is introduced and discussed. The basic concepts and remarkable achievements of four representative laser 3D manufacturing techniques such as selective laser sintering (or melting) techniques, direct laser writing for graphene-based electrodes, laser-induced forward transfer technique and laser ablation subtractive manufacturing are highlighted. Finally, major challenges and prospects of the laser 3D manufacturing technologies for battery cell manufacturing will be provided

    On-Demand Power Source for Medical Electronic Implants: Acousto-Mechanical Vibrations from Human Vocal Folds

    Get PDF
    For use in vibration-driven power generation, we have quantitatively characterized the acousto-mechanical vibrations that propagate from the human vocal folds through the neck and head along the skeletal frames. We have used five MEMS accelerometers to characterize the acousto-mechanical vibrations present in various situations. The acousto-mechanical vibrations excite vibration-driven energy harvesters at their resonance frequencies between 90-300 Hz and generate up to 0.15 mW/cm^3 on demand

    Diamagnetically Levitated MEMS Accelerometers

    Get PDF
    We introduce the theory and a proof-of-concept design for MEMS-based, diamagnetically-levitated accelerometers. The theory includes an equation for determining the diamagnetic force above a checkerboard configuration of magnets. We demonstrate both electronic probing and a rapid MEMS-based interferometer technique for position sensing of the proof mass. Through a proof-of-concept design, we show electrostatic-measurement sensitivity achieving 34 ÎĽg at a 0.1 V sense signal and interferometer-measurement sensitivity achieving 6 ÎĽg for in-plane vibrations at 5 Hz. We conclude by outlining batch-fabrication steps to produce levitated accelerometers

    Traveling Granular Segregation Patterns in a Long Drum Mixer

    Full text link
    Mixtures of granular media often exhibit size segregation along the axis of a partially-filled, horizontal, rotating cylinder. Previous experiments have observed axial bands of segregation that grow from concentration fluctuations and merge in a manner analogous to spinodal decomposition. We have observed that a new dynamical state precedes this effect in certain mixtures: bi-directional traveling waves. By preparing initial conditions, we found that the wave speed decreased with wavelength. Such waves appear to be inconsistent with simple PDE models which are first order in time.Comment: 11 page
    • …
    corecore