'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
We introduce the theory and a proof-of-concept design for MEMS-based, diamagnetically-levitated
accelerometers. The theory includes an equation for determining the diamagnetic force above a
checkerboard configuration of magnets. We demonstrate both electronic probing and a rapid MEMS-based
interferometer technique for position sensing of the proof mass. Through a proof-of-concept
design, we show electrostatic-measurement sensitivity achieving 34 μg at a 0.1 V sense signal and
interferometer-measurement sensitivity achieving 6 μg for in-plane vibrations at 5 Hz. We conclude by
outlining batch-fabrication steps to produce levitated accelerometers