29 research outputs found

    Haploinsufficiency of interferon regulatory factor 4 strongly protects against autoimmune diabetes in NOD mice

    Get PDF
    Aims/hypothesis: Interferon regulatory factor (IRF)4 plays a critical role in lymphoid development and the regulation of immune responses. Genetic deletion of IRF4 has been shown to suppress autoimmune disease in several mouse models, but its role in autoimmune diabetes in NOD mice remains unknown. Methods: To address the role of IRF4 in the pathogenesis of autoimmune diabetes in NOD mice, we generated IRF4-knockout NOD mice and investigated the impact of the genetic deletion of IRF4 on diabetes, insulitis and insulin autoantibody; the effector function of T cells in vivo and in vitro; and the proportion of dendritic cell subsets. Results: Heterozygous IRF4-deficient NOD mice maintained the number and phenotype of T cells at levels similar to NOD mice. However, diabetes and autoantibody production were completely suppressed in both heterozygous and homozygous IRF4-deficient NOD mice. The level of insulitis was strongly suppressed in both heterozygous and homozygous IRF4-deficient mice, with minimal insulitis observed in heterozygous mice. An adoptive transfer study revealed that IRF4 deficiency conferred disease resistance in a gene-dose-dependent manner in recipient NOD/severe combined immunodeficiency mice. Furthermore, the proportion of migratory dendritic cells in lymph nodes was reduced in heterozygous and homozygous IRF4-deficient NOD mice in an IRF4 dose-dependent manner. These results suggest that the levels of IRF4 in T cells and dendritic cells are important for the pathogenesis of diabetes in NOD mice. Conclusions/interpretation: Haploinsufficiency of IRF4 halted disease development in NOD mice. Our findings suggest that an IRF4-targeted strategy might be useful for modulating autoimmunity in type 1 diabetes

    Multiparameter Phospho-Flow Analysis of Lymphocytes in Early Rheumatoid Arthritis: Implications for Diagnosis and Monitoring Drug Therapy

    Get PDF
    The precise mechanisms involved in the initiation and progression of rheumatoid arthritis (RA) are not known. Early stages of RA often have non-specific symptoms, delaying diagnosis and therapy. Additionally, there are currently no established means to predict clinical responsiveness to therapy. Immune cell activation is a critical component therefore we examined the cellular activation of peripheral blood mononuclear cells (PBMCs) in the early stages of RA, in order to develop a novel diagnostic modality.PBMCs were isolated from individuals diagnosed with early RA (ERA) (n = 38), longstanding RA (n = 10), osteoarthritis (OA) (n = 19) and from healthy individuals (n = 10). PBMCs were examined for activation of 15 signaling effectors, using phosphorylation status as a measure of activation in immunophenotyped cells, by flow cytometry (phospho-flow). CD3+CD4+, CD3+CD8+ and CD20+ cells isolated from patients with ERA, RA and OA exhibited activation of multiple phospho-epitopes. ERA patient PBMCs showed a bias towards phosphorylation-activation in the CD4+ and CD20+ compartments compared to OA PBMCs, where phospho-activation was primarily observed in CD8+ cells. The ratio of phospho (p)-AKT/p-p38 was significantly elevated in patients with ERA and may have diagnostic potential. The mean fluorescent intensity (MFI) levels for p-AKT and p-H3 in CD4+, CD8+ and CD20+ T cells correlated directly with physician global assessment scores (MDGA) and DAS (disease activity score). Stratification by medications revealed that patients receiving leflunomide, systemic steroids or anti-TNF therapy had significant reductions in phospho-specific activation compared with patients not receiving these therapies. Correlative trends between medication-associated reductions in the levels of phosphorylation of specific signaling effectors and lower disease activity were observed.Phospho-flow analysis identified phosphorylation-activation of specific signaling effectors in the PB from patients with ERA. Notably, phosphorylation of these signaling effectors did not distinguish ERA from late RA, suggesting that the activation status of discrete cell populations is already established early in disease. However, when the ratio of MFI values for p-AKT and p-p38 is >1.5, there is a high likelihood of having a diagnosis of RA. Our results suggest that longitudinal sampling of patients undergoing therapy may result in phospho-signatures that are predictive of drug responsiveness

    Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes

    Get PDF
    Stratifying patients on the basis of molecular signatures could facilitate development of therapeutics that target pathways specific to a particular disease or tissue location. Previous studies suggest that pathogenesis of rheumatoid arthritis (RA) is similar in all affected joints. Here we show that distinct DNA methylation and transcriptome signatures not only discriminate RA fibroblast-like synoviocytes (FLS) from osteoarthritis FLS, but also distinguish RA FLS isolated from knees and hips. Using genome-wide methods, we show differences between RA knee and hip FLS in the methylation of genes encoding biological pathways, such as IL-6 signalling via JAK-STAT pathway. Furthermore, differentially expressed genes are identified between knee and hip FLS using RNA-sequencing. Double-evidenced genes that are both differentially methylated and expressed include multiple HOX genes. Joint-specific DNA signatures suggest that RA disease mechanisms might vary from joint to joint, thus potentially explaining some of the diversity of drug responses in RA patients

    Diabetes mellitus and cardiovascular risk management in patients with rheumatoid arthritis: An international audit

    No full text
    Aim The objective was to examine the prevalence of atherosclerotic cardiovascular disease (ASCVD) and its risk factors among patients with RA with diabetes mellitus (RA-DM) and patients with RA without diabetes mellitus (RAwoDM), and to evaluate lipid and blood pressure (BP) goal attainment in RA-DM and RAwoDM in primary and secondary prevention. Methods The cohort was derived from the Survey of Cardiovascular Disease Risk Factors in Patients with Rheumatoid Arthritis from 53 centres/19 countries/3 continents during 2014-2019. We evaluated the prevalence of cardiovascular disease (CVD) among RA-DM and RAwoDM. The study population was divided into those with and without ASCVD, and within these groups we compared risk factors and CVD preventive treatment between RA-DM and RAwoDM. Results The study population comprised of 10 543 patients with RA, of whom 1381 (13%) had DM. ASCVD was present in 26.7% in RA-DM compared with 11.6% RAwoDM (p<0.001). The proportion of patients with a diagnosis of hypertension, hyperlipidaemia and use of lipid-lowering or antihypertensive agents was higher among RA-DM than RAwoDM (p<0.001 for all). The majority of patients with ASCVD did not reach the lipid goal of low-density lipoprotein cholesterol <1.8 mmol/L. The lipid goal attainment was statistically and clinically significantly higher in RA-DM compared with RAwoDM both for patients with and without ASCVD. The systolic BP target of <140 mm Hg was reached by the majority of patients, and there were no statistically nor clinically significant differences in attainment of BP targets between RA-DM and RAwoDM. Conclusion CVD preventive medication use and prevalence of ASCVD were higher in RA-DM than in RAwoDM, and lipid goals were also more frequently obtained in RA-DM. Lessons may be learnt from CVD prevention programmes in DM to clinically benefit patients with RA.
    corecore