188 research outputs found

    Patient-Specific Neurovascular Simulator for Evaluating the Performance of Medical Robots and Instrumens

    Get PDF
    Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, May 200

    X-Ray Fluctuations from Locally Unstable Advection-Dominated Disks

    Get PDF
    The response of advection-dominated accretion disks to local disturbances is examined by one-dimensional numerical simulations. It is generally believed that advection-dominated disks are thermally stable. We, however, find that any disurbance added onto accretion flow at large radii does not decay so rapidly that it can move inward with roughly the free-fall velocity. Although disturbances continue to be present, the global disk structure will not be modified largely. This can account for persistent hard X-ray emission with substantial variations observed in active galactic nuclei and stellar black hole candidates during the hard state. Moreover, when the disturbance reaches the innermost parts, an acoustic wave emerges, propagating outward as a shock wave. The resultant light variation is roughly (time) symmetric and is quite reminiscent of the observed X-ray shots of Cygnus X-1.Comment: plain TeX, 11 pages, without figures; to be published in ApJ Lette

    Variability of Active Galactic Nuclei from the Optical to X-ray Regions

    Full text link
    Some progress in understanding AGN variability is reviewed. Reprocessing of X-ray radiation to produce significant amounts of longer-wavelength continua seems to be ruled out. In some objects where there has been correlated X-ray and optical variability, the amplitude of the optical variability has exceeded the amplitude of X-ray variability. We suggest that accelerated particles striking material could be linking X-ray and optical variability (as in activity in the solar chromosphere). Beaming effects could be significant in all types of AGN. The diversity in optical/X-ray relationships at different times in the same object, and between different objects, might be explained by changes in geometry and directions of motion relative to our line of sight. Linear shot-noise models of the variability are ruled out; instead there must be large-scale organization of variability. Variability occurs on light-crossing timescales rather than viscous timescales and this probably rules out the standard Shakura-Sunyaev accretion disk. Radio-loud and radio-quiet AGNs have similar continuum shapes and similar variability properties. This suggests similar continuum origins and variability mechanisms. Despite their extreme X-ray variability, narrow-line Seyfert 1s (NLS1s) do not show extreme optical variability.Comment: Invited talk given at Euro Asian Astronomical Society meeting in Moscow, June 2002. 20 pages, 4 figures. References update

    Discovery of the Onset of Rapid Accretion by a Dormant Massive Black Hole

    Full text link
    Massive black holes are believed to reside at the centres of most galaxies. They can be- come detectable by accretion of matter, either continuously from a large gas reservoir or impulsively from the tidal disruption of a passing star, and conversion of the gravitational energy of the infalling matter to light. Continuous accretion drives Active Galactic Nuclei (AGN), which are known to be variable but have never been observed to turn on or off. Tidal disruption of stars by dormant massive black holes has been inferred indirectly but the on- set of a tidal disruption event has never been observed. Here we report the first discovery of the onset of a relativistic accretion-powered jet in the new extragalactic transient, Swift J164449.3+573451. The behaviour of this new source differs from both theoretical models of tidal disruption events and observations of the jet-dominated AGN known as blazars. These differences may stem from transient effects associated with the onset of a powerful jet. Such an event in the massive black hole at the centre of our Milky Way galaxy could strongly ionize the upper atmosphere of the Earth, if beamed towards us.Comment: Submitted to Nature. 4 pages, 3 figures (main paper). 26 pages, 13 figures (supplementary information

    Broad band variability of SS433: Accretion disk at work?

    Full text link
    We present broad band power spectra of variations of SS433 in radio, optical and X-ray spectral bands. We show that at frequencies lower than 1e-5 Hz the source demonstrates the same variability pattern in all these bands. The broad band power spectrum can be fitted by one power law down to frequencies ~1e-7 Hz with flattening afterwards. Such a flattening means that on time scales longer than ~1e7 sec the source variability becomes uncorrelated. This naturally leads to the appearance of quasi-poissonian flares in the source light curve, which have been regularly observed in radio and optical spectral bands. The radio flux power spectrum appears to have a second break at Fourier frequencies ~1e-5 Hz which can be caused by the smearing of the intrinsic radio variability on timescale of the light-crossing time of the radio emitting region. We find a correlation of the radio and optical fluxes of SS433 and the radio flux is delayed by about ~2 days with respect to the optical one. Power spectra of optical and X-ray variabilities continue with the same power law from 1e-7 Hz up to ~0.01-0.05 Hz. The broad band power spectrum of SS433 can be interpreted in terms of self-similar accretion rate modulations in the accretion disk proposed by Lyubarskii (1997) and elaborated by Churazov et al. (2001). We discuss a viscous time-scale in the accretion disk of SS433 in implication to the observed broad band power spectrum.Comment: 8 pages, 2 figures. Submitted to A&

    Inflammatory response gene polymorphisms and their relationship with colorectal cancer risk

    Get PDF
    <p>Abstract</p> <p>Backgroud</p> <p>Patients with chronic inflammatory bowel disease (IBD) are at an increased risk of colorectal cancer (CRC) and it is estimated that one in six persons diagnosed with IBD will develop CRC. This fact suggests that genetic variations in inflammatory response genes may act as CRC disease risk modifiers.</p> <p>Methods</p> <p>In order to test this hypothesis we investigated a series of polymorphisms in 6 genes (NOD2, DLG5, OCTN1, OCTN2, IL4, TNFα) associated with the inflammatory response on a group of 607 consecutive newly diagnosed colorectal cancer patients and compared the results to controls (350 consecutive newborns and 607 age, sex and geographically matched controls).</p> <p>Results</p> <p>Of the six genes only one polymorphism in TNFα(-1031T/T) showed any tendency to be associated with disease risk (64.9% for controls and 71.4% for CRC) which we further characterized on a larger cohort of CRC patients and found a more profound relationship between the TNFα -1031T/T genotype and disease (64.5% for controls vs 74.7% for CRC cases above 70 yrs). Then, we investigated this result and identified a suggestive tendency, linking the TNFα -1031T/T genotype and a previously identified change in the CARD15/NOD2 gene (OR = 1.87; p = 0,02 for CRC cases above 60 yrs).</p> <p>Conclusion</p> <p>The association of polymorphisms in genes involved in the inflammatory response and CRC onset suggest that there are genetic changes capable of influencing disease risk in older persons.</p
    corecore