21,557 research outputs found

    Similarity Solutions for Boundary Layer Flows on a Moving Surface in Non-Newtonian Power-Law Fluids

    Get PDF
    A similarity analysis of the boundary layer flow caused by the motion of a semi-infinite flat sulface in a non-Newtonian power-law fluid at rest is made in this paper. These similar solutions fall into two categories: similarity solutions corresponding to steady boundary layers over moving surfaces and similarity solutions corresponding to unsteady boundary layers past moving flat surfaces, respectively. Except in the special case n = 1/2 (pseudoplastic) and n = 1 (Newtonian) fluids, solutions of the first category problems must be obtainednumerically. However, for the second category analytical solutions are possible for a large class of pseudoplasticfluids (n < 1), including the case of a Newtonianfluid (n = 1)

    Purifying single photon emission from a CdSe/CdS colloidal quantum dot

    Get PDF
    Colloidal quantum dots are robust and flexible single photon emitters for room-temperature applications, but their purity is strongly reduced at high pump powers, due to multiexcitonic emission which cannot be easily filtered due to the photo-luminescence spectral broadening at room temperature. Giant-shell quantum dots feature a large blueshift of the biexciton spectrum due to electron-hole wave function engineering and piezoelectric charge separation, which can be exploited for spectral separation of the single exciton from the multiexciton emission. Here, by spectral filtering, we show that we can recover an excellent single-photon emission, with g2(0)<0.05g_2{(0)} < 0.05 (resolution limited), even at high pump powers above saturation of the exciton emission. The bright and pure single-photon generation shown here has important applications in quantum information technology and random-number generation

    Patient safety in developing countries: retrospective estimation of scale and nature of harm to patients in hospital

    Get PDF
    OBJECTIVE: To assess the frequency and nature of adverse events to patients in selected hospitals in developing or transitional economies. DESIGN: Retrospective medical record review of hospital admissions during 2005 in eight countries. SETTING: Ministries of Health of Egypt, Jordan, Kenya, Morocco, Tunisia, Sudan, South Africa and Yemen; the World Health Organisation (WHO) Eastern Mediterranean and African Regions (EMRO and AFRO), and WHO Patient Safety. PARTICIPANTS: Convenience sample of 26 hospitals from which 15,548 patient records were randomly sampled. MAIN OUTCOME MEASURES: Two stage screening. Initial screening based on 18 explicit criteria. Records that screened positive were then reviewed by a senior physician for determination of adverse event, its preventability, and the resulting disability. RESULTS: Of the 15,548 records reviewed, 8.2% showed at least one adverse event, with a range of 2.5% to 18.4% per country. Of these events, 83% were judged to be preventable, while about 30% were associated with death of the patient. About 34% adverse events were from therapeutic errors in relatively non-complex clinical situations. Inadequate training and supervision of clinical staff or the failure to follow policies or protocols contributed to most events. CONCLUSIONS: Unsafe patient care represents a serious and considerable danger to patients in the hospitals that were studied, and hence should be a high priority public health problem. Many other developing and transitional economies will probably share similar rates of harm and similar contributory factors. The convenience sampling of hospitals might limit the interpretation of results, but the identified adverse event rates show an estimate that should stimulate and facilitate the urgent institution of appropriate remedial action and also to trigger more research. Prevention of these adverse events will be complex and involves improving basic clinical processes and does not simply depend on the provision of more resources

    Combining ability analysis in Brassica juncea L. for oil quality traits

    Get PDF
    This study was conducted in Brassica juncea L. for the determination of good combiners for quality associated traits using 8 x 8 diallel during 2004 - 2005 and 2005 - 2006. Analysis of variance revealed highly significant differences (p 0.01) for all the studied traits. Components of combining ability analysis showed that general combining ability (GCA) was highly significant (p 0.01) for oil percentage (%) and glucosinolates (&#236;Molg-1) whereas the rest were non-significant. Specific combining ability (SCA)effects were highly significant for all traits except for oleic acids. Reciprocal combining ability (RCA) effects were highly significant (p 0.01) for all traits except for oleic acid which was significant at (p 0.05). The SCA effects were higher than RCA for oil %. The GCA effects were of greater magnitude thanthe SCA effects for glucosinolate, erucic acid and protein content. The parental genotypes NUM009, NUM123, NUM105 and NUM117 and their hybrids NUM009x NUM123, NUM103x NUM105, NUM113x NUM124 and NUM103x NUM120 had high GCA and SCA effects, respectively and therefore these could be exploited for further selection of high yielding progenies. The overall study reveals the importance of both additive and non-additive genetic variability suggesting the use of integrated breeding strategies which can efficiently utilize the additive as well as non-additive genetic variability

    Clades and clans: a comparison study of two evolutionary models

    Get PDF
    The Yule-Harding-Kingman (YHK) model and the proportional to distinguishable arrangements (PDA) model are two binary tree generating models that are widely used in evolutionary biology. Understanding the distributions of clade sizes under these two models provides valuable insights into macro-evolutionary processes, and is important in hypothesis testing and Bayesian analyses in phylogenetics. Here we show that these distributions are log-convex, which implies that very large clades or very small clades are more likely to occur under these two models. Moreover, we prove that there exists a critical value κ(n)\kappa(n) for each n⩾4n\geqslant 4 such that for a given clade with size kk, the probability that this clade is contained in a random tree with nn leaves generated under the YHK model is higher than that under the PDA model if 1<k<κ(n)1<k<\kappa(n), and lower if κ(n)<k<n\kappa(n)<k<n. Finally, we extend our results to binary unrooted trees, and obtain similar results for the distributions of clan sizes.Comment: 21page

    Electron irradiation effects on superconductivity in PdTe2_2: an application of a generalized Anderson theorem

    Full text link
    Low temperature (∼\sim 20~K) electron irradiation with 2.5 MeV relativistic electrons was used to study the effect of controlled non-magnetic disorder on the normal and superconducting properties of the type-II Dirac semimetal PdTe2_2. We report measurements of longitudinal and Hall resistivity, thermal conductivity and London penetration depth using tunnel-diode resonator technique for various irradiation doses. The normal state electrical resistivity follows Matthiessen rule with an increase of the residual resistivity at a rate of ∼\sim0.77μΩ \mu \Omegacm/(C/cm2)(\textrm{C}/\textrm{cm}^2). London penetration depth and thermal conductivity results show that the superconducting state remains fully gapped. The superconducting transition temperature is suppressed at a non-zero rate that is about sixteen times slower than described by the Abrikosov-Gor'kov dependence, applicable to magnetic impurity scattering in isotropic, single-band ss-wave superconductors. To gain information about the gap structure and symmetry of the pairing state, we perform a detailed analysis of these experimental results based on insight from a generalized Anderson theorem for multi-band superconductors. This imposes quantitative constraints on the gap anisotropies for each of the possible pairing candidate states. We conclude that the most likely pairing candidate is an unconventional A1g+−A_{1g}^{+-} state. While we cannot exclude the conventional A1g++A_{1g}^{++} and the triplet A1uA_{1u}, we demonstrate that these states require additional assumptions about the orbital structure of the disorder potential to be consistent with our experimental results, e.g., a ratio of inter- to intra-band scattering for the singlet state significantly larger than one. Due to the generality of our theoretical framework, we think that it will also be useful for irradiation studies in other spin-orbit-coupled multi-orbital systems.Comment: 22 pages, 12 figure
    • …
    corecore