62,258 research outputs found

    Phase dynamics of inductively coupled intrinsic Josephson junctions and terahertz electromagnetic radiation

    Full text link
    The Josephson effects associated with quantum tunneling of Cooper pairs manifest as nonlinear relations between the superconductivity phase difference and the bias current and voltage. Many novel phenomena appear, such as Shapiro steps in dc cuurent-voltage (IV) characteristics of a Josephson junction under microwave shining, which can be used as a voltage standard. Inversely, the Josephson effects provide a unique way to generate high-frequency electromagnetic (EM) radiation by dc bias voltage. The discovery of cuprate high-Tc superconductors accelerated the effort to develop novel source of EM waves based on a stack of atomically dense-packed intrinsic Josephson junctions (IJJs), since the large superconductivity gap covers the whole terahertz frequency band. Very recently, strong and coherent terahertz radiations have been successfully generated from a mesa structure of Bi2Sr2CaCu2O8+δ\rm{Bi_2Sr_2CaCu_2O_{8+\delta}} single crystal which works both as the source of energy gain and as the cavity for resonance. It is then found theoretically that, due to huge inductive coupling of IJJs produced by the nanometer junction separation and the large London penetration depth of order of μm\rm{\mu m} of the material, a novel dynamic state is stabilized in the coupled sine-Gordon system, in which ±π\pm \pi kinks in phase differences are developed responding to the standing wave of Josephson plasma and are stacked alternatively in the c-axis. This novel solution of the inductively coupled sine-Gordon equations captures the important features of experimental observations. The theory predicts an optimal radiation power larger than the one available to date by orders of magnitude, and thus suggests the technological relevance of the phenomena.Comment: review article (69 pages, 30 figures

    Multipartite Entanglement Measures and Quantum Criticality from Matrix and Tensor Product States

    Full text link
    We compute the multipartite entanglement measures such as the global entanglement of various one- and two-dimensional quantum systems to probe the quantum criticality based on the matrix and tensor product states (MPSs/TPSs). We use infinite time-evolving block decimation (iTEBD) method to find the ground states numerically in the form of MPSs/TPSs, and then evaluate their entanglement measures by the method of tensor renormalization group (TRG). We find these entanglement measures can characterize the quantum phase transitions by their derivative discontinuity right at the critical points in all models considered here. We also comment on the scaling behaviors of the entanglement measures by the ideas of quantum state renormalization group transformations.Comment: 22 pages, 11 figure

    A cryogenic surface-electrode elliptical ion trap for quantum simulation

    Full text link
    Two-dimensional crystals of trapped ions are a promising system with which to implement quantum simulations of challenging problems such as spin frustration. Here, we present a design for a surface-electrode elliptical ion trap which produces a 2-D ion crystal and is amenable to microfabrication, which would enable higher simulated coupling rates, as well as interactions based on magnetic forces generated by on-chip currents. Working in an 11 K cryogenic environment, we experimentally verify to within 5% a numerical model of the structure of ion crystals in the trap. We also explore the possibility of implementing quantum simulation using magnetic forces, and calculate J-coupling rates on the order of 10^3 / s for an ion crystal height of 10 microns, using a current of 1 A

    Effect of an InP/In0.53_{0.53}Ga0.47_{0.47}As Interface on Spin-orbit Interaction in In0.52_{0.52}Al0.48_{0.48}As/In0.53_{0.53}Ga0.47_{0.47}As Heterostructures

    Get PDF
    We report the effect of the insertion of an InP/In0.53_{0.53}Ga47_{47}As Interface on Rashba spin-orbit interaction in In0.52_{0.52}Al0.48_{0.48}As/In0.53_{0.53}Ga0.47_{0.47}As quantum wells. A small spin split-off energy in InP produces a very intriguing band lineup in the valence bands in this system. With or without this InP layer above the In0.53_{0.53}Ga47_{47}As well, the overall values of the spin-orbit coupling constant α\alpha turned out to be enhanced or diminished for samples with the front- or back-doping position, respectively. These experimental results, using weak antilocalization analysis, are compared with the results of the kp\mathbf{k\cdot p} theory. The actual conditions of the interfaces and materials should account for the quantitative difference in magnitude between the measurements and calculations.Comment: Submitted for publication; v2 to adjust Eq.6; v3 to correct the figure file name; v4, a revised version accepted for publication in Phys. Rev.

    Path integral for a relativistic Aharonov-Bohm-Coulomb system

    Full text link
    The path integral for the relativistic spinless Aharonov-Bohm-Coulomb system is solved, and the energy spectra are extracted from the resulting amplitude.Comment: 6 pages, Revte

    A Spin-Isospin Dependent 3N Scattering Formalism in a 3D Faddeev Scheme

    Full text link
    We have introduced a spin-isospin dependent three-dimensional approach for formulation of the three-nucleon scattering. Faddeev equation is expressed in terms of vector Jacobi momenta and spin-isospin quantum numbers of each nucleon. Our formalism is based on connecting the transition amplitude TT to momentum-helicity representations of the two-body tt-matrix and the deuteron wave function. Finally the expressions for nucleon-deuteron elastic scattering and full breakup process amplitudes are presented.Comment: 17 page
    corecore