92 research outputs found

    Interfacing topological insulators and ferrimagnets: Bi2_2Te3_3 and Fe3_3O4_4 heterostructures grown by molecular beam epitaxy

    Full text link
    Relying on the magnetism induced by the proximity effect in heterostructures of topological insulators and magnetic insulators is one of the promising routes to achieve the quantum anomalous Hall effect. Here we investigate heterostructures of Bi2_2Te3_3 and Fe3_3O4_4. By growing two different types of heterostructures by molecular beam epitaxy, Fe3_3O4_4 on Bi2_2Te3_3 and Bi2_2Te3_3 on Fe3_3O4_4, we explore differences in chemical stability, crystalline quality, electronic structure, and transport properties. We find the heterostructure Bi2_2Te3_3 on Fe3_3O4_4 to be a more viable approach, with transport signatures in agreement with a gap opening in the topological surface states.Comment: accepted for publication in APL Material

    Growth Mechanism of Nanowires: Ternary Chalcogenides

    Get PDF
    In the past two decades there has been a large rise in the investment and expectations for nanotechnology use. Almost every area of research has projected improvements in sensors, or even a promise for the emergence of some novel device technologies. For these applications major focuses of research are in the areas of nanoparticles and graphene. Although there are some near term applications with nanowires in photodetectors and other low light detectors, there are few papers on the growth mechanism and fabrication of nanowire-based devices. Semiconductor nanowires exhibit very favorable and promising optical properties, including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here an overview of the mechanism of nanowire growth from the melt, and some preliminary results for the thallium arsenic selenide material system. Thallium arsenic selenide (TAS) is a multifunctional material combining excellent acousto-optical, nonlinear and radiation detection properties. We observed that small units of (TAS) nanocubes arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. In some cases very long wires (less than mm) are formed. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places

    Growth Mechanism of Nanowires: Binary and Ternary Chalcogenides

    Get PDF
    Semiconductor nanowires exhibit very exciting optical and electrical properties including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here the mechanism of nanowire growth from the melt-liquid-vapor medium. We describe preliminary results of binary and ternary selenide materials in light of recent theories. Experiments were performed with lead selenide and thallium arsenic selenide systems which are multifunctional material and have been used for detectors, acousto-optical, nonlinear and radiation detection applications. We observed that small units of nanocubes and elongated nanoparticles arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places. Growth of lead selenide nanowires was performed by physical vapor transport method and thallium arsenic selenide nanowire by vapor-liquid-solid (VLS) method. In some cases very long wires (>mm) are formed. To achieve this goal experiments were performed to create situation where nanowires grew on the surface of solid thallium arsenic selenide itself

    Hand osteoarthritis: clinical phenotypes, molecular mechanisms and disease management

    Get PDF
    Osteoarthritis (OA) is a highly prevalent condition and the hand is the most commonly affected site. Patients with hand OA frequently report symptoms of pain, functional limitations, and frustration in undertaking everyday activities. The condition presents clinically with changes to the bone, ligaments, cartilage and synovial tissue, which can be observed using radiography, ultrasonography or MRI. Hand OA is a heterogeneous disorder and is considered to be multifactorial in aetiology. This review provides an overview of the epidemiology, presentation and burden of hand OA, including an update on hand OA imaging (including the development of novel techniques), disease mechanisms and management. In particular, areas for which new evidence has substantially changed the way we understand, consider and treat hand OA are highlighted. For example, genetic studies, clinical trials and careful prospective imaging studies from the past 5 years are beginning to provide insights into the pathogenesis of hand OA that might uncover new therapeutic targets in disease

    Nanocomposites: synthesis, structure, properties and new application opportunities

    Full text link
    corecore