86,610 research outputs found

    Reconstruction with velocities

    Get PDF
    Reconstruction is becoming a crucial procedure of galaxy clustering analysis for future spectroscopic redshift surveys to obtain subper cent level measurement of the baryon acoustic oscillation scale. Most reconstruction algorithms rely on an estimation of the displacement field from the observed galaxy distribution. However, the displacement reconstruction degrades near the survey boundary due to incomplete data and the boundary effects extend to ∼100 Mpc/h within the interior of the survey volume. We study the possibility of using radial velocities measured from the cosmic microwave background observation through the kinematic Sunyaev-Zeldovich effect to improve performance near the boundary. We find that the boundary effect can be reduced to ∼30 − 40 Mpc/h with the velocity information from Simons Observatory. This is especially helpful for dense low redshift surveys where the volume is relatively small and a large fraction of total volume is affected by the boundary

    Pump induced Autler-Townes effect and A-T mixing in a four level atoms

    Full text link
    It is shown by theoretical simulation that tuning of the pump power can induce mixing and crossing of Autler-Townes(A-T)components of closely spaced transitions in atoms. Pump radiation also leads to small shifts of the central hole of A-T doublet. Off-resonance pumping gives an asymmetry in the A-T components and by controlling pump frequency detuning it is also possible to mix the A-T components.Comment: 10 Pages, 3 figur

    Unanticipated proximity behavior in ferromagnet-superconductor heterostructures with controlled magnetic noncollinearity

    Get PDF
    Magnetization noncollinearity in ferromagnet-superconductor (F/S) heterostructures is expected to enhance the superconducting transition temperature (Tc) according to the domain-wall superconductivity theory, or to suppress Tc when spin-triplet Cooper pairs are explicitly considered. We study the proximity effect in F/S structures where the F layer is a Sm-Co/Py exchange-spring bilayer and the S layer is Nb. The exchange-spring contains a single, controllable and quantifiable domain wall in the Py layer. We observe an enhancement of superconductivity that is nonmonotonic as the Py domain wall is increasingly twisted via rotating a magnetic field, different from theoretical predictions. We have excluded magnetic fields and vortex motion as the source of the nonmonotonic behavior. This unanticipated proximity behavior suggests that new physics is yet to be captured in the theoretical treatments of F/S systems containing noncollinear magnetization.Comment: 17 pages, 4 figures. Physical Review Letters in pres

    Variable - temperature scanning optical and force microscope

    Get PDF
    The implementation of a scanning microscope capable of working in confocal, atomic force and apertureless near field configurations is presented. The microscope is designed to operate in the temperature range 4 - 300 K, using conventional helium flow cryostats. In AFM mode, the distance between the sample and an etched tungsten tip is controlled by a self - sensing piezoelectric tuning fork. The vertical position of both the AFM head and microscope objective can be accurately controlled using piezoelectric coarse approach motors. The scanning is performed using a compact XYZ stage, while the AFM and optical head are kept fixed, allowing scanning probe and optical measurements to be acquired simultaneously and in concert. The free optical axis of the microscope enables both reflection and transmission experiments to be performed.Comment: 24 pages, 9 figures, submitted to the journal "Review of Scientific Instruments

    Eliashberg theory of excitonic insulating transition in graphene

    Full text link
    A sufficiently strong Coulomb interaction may open an excitonic fermion gap and thus drive a semimetal-insulator transition in graphene. In this paper, we study the Eliashberg theory of excitonic transition by coupling the fermion gap equation self-consistently to the equation of vacuum polarization function. Including the fermion gap into polarization function increases the effective strength of Coulomb interaction because it reduces the screening effects due to the collective particle-hole excitations. Although this procedure does not change the critical point, it leads to a significant enhancement of the dynamical fermion gap in the excitonic insulating phase. The validity of the Eliashberg theory is justified by showing that the vertex corrections are suppressed at large NN limit.Comment: 8 pages, 6 figure

    Quantum Electronic Transport through a Precessing Spin

    Full text link
    The conductance through a local nuclear spin precessing in a magnetic field is studied by using the equations-of-motion approach. The characteristics of the conductance is determined by the tunneling matrix and the position of equilibrium chemical potential. We find that the spin flip coupling between the electrons on the spin site and the leads produces the conductance oscillation. When the spin is precessing in the magnetic field at Larmor frequency (ωL\omega_{L}), the conductance develops the oscillation with the frequency of both ωL\omega_{L} and 2ωL\omega_{L} components, the relative spectrum weight of which can be tuned by the chemical potential and the spin flip coupling.Comment: 5 pages, 3 figure

    Vacuum Rabi splitting and intracavity dark state in a cavity-atoms system

    Full text link
    We report experimental measurements of the transmission spectrum of an optical cavity coupled with cold Rb atoms. We observe the multi-atom vacuum Rabi splitting of a composite cavity and atom system. When a coupling field is applied to the atoms and induces the resonant two-photon Raman transition with the cavity field in a Lamda-type three-level system, we observe a cavity transmission spectrum with two vacuum Rabi sidebands and a central peak representing the intracavity dark state. The central peak linewidth is significantly narrowed by the dark-state resonance and its position is insensitive to the frequency change of the empty cavity.Comment: 11 pages, 4 figure

    Fast geometric gate operation of superconducting charge qubits in circuit QED

    Full text link
    A scheme for coupling superconducting charge qubits via a one-dimensional superconducting transmission line resonator is proposed. The qubits are working at their optimal points, where they are immune to the charge noise and possess long decoherence time. Analysis on the dynamical time evolution of the interaction is presented, which is shown to be insensitive to the initial state of the resonator field. This scheme enables fast gate operation and is readily scalable to multiqubit scenario
    • …
    corecore