25,638 research outputs found
Low thrust viscous nozzle flow fields prediction
A Navier-Stokes code was developed for low thrust viscous nozzle flow field prediction. An implicit finite volume in an arbitrary curvilinear coordinate system lower-upper (LU) scheme is used to solve the governing Navier-Stokes equations and species transportation equations. Sample calculations of carbon dioxide nozzle flow are presented to verify the validity and efficiency of this code. The computer results are in reasonable agreement with the experimental data
An analytic model for the spatial clustering of dark matter haloes
We develop a simple analytic model for the gravitational clustering of dark
matter haloes to understand how their spatial distribution is biased relative
to that of the mass. The statistical distribution of dark haloes within the
initial density field (assumed Gaussian) is determined by an extension of the
Press-Schechter formalism. Modifications of this distribution caused by
gravitationally induced motions are treated using a spherical collapse
approximation. We test this model against results from a variety of N-body
simulations, and find that it gives an accurate description of a bias function.
This bias function is sufficient to calculate the cross-correlation between
dark haloes and mass, and again we find excellent agreement between simulation
results and analytic predictions. Because haloes are spatially exclusive, the
variance in the count of objects within spheres of fixed radius and overdensity
is significantly smaller than the Poisson value. This seriously complicates any
analytic calculation of the autocorrelation function of dark halos. Our
simulation results show that this autocorrelation function is proportional to
that of the mass over a wide range in , even including scales where both
functions are significantly greater than unity. The constant of proportionality
is very close to that predicted on large scales by the analytic model. This
result permits an entirely analytic estimate of the autocorrelation function of
dark haloes. We use our model to study how the distribution of galaxies may be
biased with respect to that of the mass. In conjunction with other data these
techniques should make it possible to measure the amplitude of cosmic mass
fluctuations and the density of the Universe.Comment: 34 pages including 7 figs, gziped ps file, submitted to MNRA
Unusually Large Fluctuations in the Statistics of Galaxy Formation at High Redshift
We show that various milestones of high-redshift galaxy formation, such as
the formation of the first stars or the complete reionization of the
intergalactic medium, occurred at different times in different regions of the
universe. The predicted spread in redshift, caused by large-scale fluctuations
in the number density of galaxies, is at least an order of magnitude larger
than previous expectations that argued for a sharp end to reionization. This
cosmic scatter in the abundance of galaxies introduces new features that affect
the nature of reionization and the expectations for future probes of
reionization, and may help explain the present properties of dwarf galaxies in
different environments. The predictions can be tested by future numerical
simulations and may be verified by upcoming observations. Current simulations,
limited to relatively small volumes and periodic boundary conditions, largely
omit cosmic scatter and its consequences. In particular, they artificially
produce a sudden end to reionization, and they underestimate the number of
galaxies by up to an order of magnitude at redshift 20.Comment: 8 ApJ pages, 4 figures, ApJ. Minor changes in revised version.
Originally first submitted for publication on Aug. 29, 200
The Structure and Clustering of Lyman Break Galaxies
The number density and clustering properties of Lyman-break galaxies (LBGs)
are consistent with them being the central galaxies of the most massive dark
halos present at z~3. This conclusion holds in all currently popular
hierarchical models for structure formation, and is almost independent of the
global cosmological parameters. We examine whether the sizes, luminosities,
kinematics and star-formation rates of LBGs are also consistent with this
identification. Simple formation models tuned to give good fits to low redshift
galaxies can predict the distribution of these quantities in the LBG
population. The LBGs should be small (with typical half-light radii of 0.6-2
kpc/h), should inhabit haloes of moderately high circular velocity (180-290
km/s) but have low stellar velocity dispersions (70-120 km/s) and should have
substantial star formation rates (15-100 Msun/yr). The numbers here refer to
the predicted median values in the LBG sample of Adelberger et al. (1998); the
first assumes an Omega=1 universe and the second a flat universe with
Omega=0.3. For either cosmology these predictions are consistent with the
current (rather limited) observational data. Following the work of Kennicutt
(1998) we assume stars to form more rapidly in gas of higher surface density.
This predicts that LBG samples should preferentially contain objects with low
angular momentum, and so small size, for their mass. In contrast, samples of
damped Lyman alpha systems (DLSs), should be biased towards objects with large
angular momentum. Bright LBGs and DLSs may therefore form distinct populations,
with very different sizes and star formation rates, LBGs being smaller and more
metal-rich than DLSs of similar mass and redshift.Comment: 27 pages, 9 figures, MNRAS submitte
The Radial Distribution of Galaxies in LCDM clusters
We study the radial distribution of subhalos and galaxies using
high-resolution cosmological simulations of galaxy clusters formed in the
concordance LCDM cosmology. In agreement with previous studies, we find that
the radial distribution of subhalos is significantly less concentrated than
that of the dark matter, when subhalos are selected using their present-day
gravitationally bound mass. We show that the difference in the radial
distribution is not a numerical artifact and is due to tidal stripping. The
subhalos in the cluster core lose more than 70% of their initial mass since
accretion, while the average tidal mass loss for halos near the virial radius
is ~30%. This introduces a radial bias in the spatial distribution of subhalos
when they are selected using their tidally truncated mass. We demonstrate that
the radial bias disappears almost entirely if subhalos are selected using their
mass or circular velocity at the accretion epoch. The comparisons of the
results of dissipationless simulations to the observed distribution of galaxies
in clusters are therefore sensitive to the selection criteria used to select
subhalo samples. Using the simulations that include cooling and starformation,
we show that the radial distribution of subhalos is in reasonable agreement
with the observed radial distribution of galaxies in clusters for
0.1<R/R200<2.0, if subhalos are selected using the stellar mass of galaxies.
The radial bias is minimized in this case because the stars are located in the
centers of dark matter subhalos and are tightly bound. The stellar mass of an
object is therefore approximately conserved as the dark matter is stripped from
the outer regions. Nevertheless, the concentration of the radial distribution
of galaxies is systematically lower than that of the dark matter.Comment: submitted to ApJ, 12 pages, 12 figure
Observational evidence for stochastic biasing
We show that the galaxy density in the Las Campanas Redshift Survey (LCRS)
cannot be perfectly correlated with the underlying mass distribution since
various galaxy subpopulations are not perfectly correlated with each other,
even taking shot noise into account. This rules out the hypothesis of simple
linear biasing, and suggests that the recently proposed stochastic biasing
framework is necessary for modeling actual data.Comment: 4 pages, with 2 figures included. Minor revisions to match accepted
ApJL version. Links and color fig at
http://www.sns.ias.edu/~max/r_frames.html or from [email protected]
The case for the bulk nature of the spectroscopic Luttinger liquid signatures observed in angle resolved photoemission of Li0.9Mo6O17
Angle resolved photoemission spectroscopy (ARPES) has been performed on
quasi-one dimensional Li0.9Mo6O17 using photon energy 500 eV. Measured band
dispersions are in agreement with those from both low photon energy
measurements and band structure calculations. The momentum integrated ARPES
spectrum is well fit by the finite temperature Luttinger liquid (LL)spectral
function, with an anomalous exponent 0.6 that is the same within experimental
uncertainty as the value found with photon energy 30 eV. These identical
findings at both low and high photon energies are entirely consistent with
reasoning based on the crystal structure, that the quasi-one dimensional chains
lie two layers below the cleavage plane so that the observed spectroscopic LL
behavior of Li0.9Mo6O17 is a bulk property.Comment: Accepted for publication in Physical Review
A Counts-in-Cells Analysis of Lyman-break Galaxies at z~3
We have measured the counts-in-cells fluctuations of 268 Lyman-break galaxies
with spectroscopic redshifts in six 9 arcmin by 9 arcmin fields at z~3. The
variance of galaxy counts in cubes of comoving side length 7.7, 11.9, 11.4
h^{-1} Mpc is \sigma_{gal}^2 ~ 1.3\pm0.4 for \Omega_M=1, 0.2 open, 0.3 flat,
implying a bias on these scales of \sigma_{gal} / \sigma_{mass} = 6.0\pm1.1,
1.9\pm0.4, 4.0\pm0.7. The bias and abundance of Lyman-break galaxies are
surprisingly consistent with a simple model of structure formation which
assumes only that galaxies form within dark matter halos, that Lyman-break
galaxies' rest-UV luminosities are tightly correlated with their dark masses,
and that matter fluctuations are Gaussian and have a linear power-spectrum
shape at z~3 similar to that determined locally (\Gamma~0.2). This conclusion
is largely independent of cosmology or spectral normalization \sigma_8. A
measurement of the masses of Lyman-break galaxies would in principle
distinguish between different cosmological scenarios.Comment: Accepted for publication in ApJ, 16 pages including 4 figure
Magnetic structure of the field-induced multiferroic GdFe3(BO3)4
We report a magnetic x-ray scattering study of the field-induced multiferroic
GdFe3(BO3)4. Resonant x-ray magnetic scattering at the Gd LII,III edges
indicates that the Gd moments order at TN ~ 37 K. The magnetic structure is
incommensurate below TN, with the incommensurability decreasing monotonically
with decreasing temperature until a transition to a commensurate magnetic phase
is observed at T ~ 10 K. Both the Gd and Fe moments undergo a spin
reorientation transition at TSR ~ 9 K such that the moments are oriented along
the crystallographic c axis at low temperatures. With magnetic field applied
along the a axis, our measurements suggest that the field-induced polarization
phase has a commensurate magnetic structure with Gd moments rotated ~45 degrees
toward the basal plane, which is similar to the magnetic structure of the Gd
subsystem observed in zero field between 9 and 10 K, and the Fe subsystem has a
ferromagnetic component in the basal plane.Comment: 27 pages, 7 figures, to appear in Phys. Rev.
Imprint of Inhomogeneous Reionization on the Power Spectrum of Galaxy Surveys at High Redshifts
We consider the effects of inhomogeneous reionization on the distribution of
galaxies at high redshifts. Modulation of the formation process of the ionizing
sources by large scale density modes makes reionization inhomogeneous and
introduces a spread to the reionization times of different regions with the
same size. After sources photo-ionize and heat these regions to a temperature
\ga 10^4K at different times, their temperatures evolve as the ionized
intergalactic medium (IGM) expands. The varying IGM temperature makes the
minimum mass of galaxies spatially non-uniform with a fluctuation amplitude
that increases towards small scales. These scale-dependent fluctuations modify
the shape of the power spectrum of low-mass galaxies at high redshifts in a way
that depends on the history of reionization. The resulting distortion of the
primordial power spectrum is significantly larger than changes associated with
uncertainties in the inflationary parameters, such as the spectral index of the
scalar power spectrum or the running of the spectral index. Future surveys of
high-redshift galaxies will offer a new probe of the thermal history of the IGM
but might have a more limited scope in constraining inflation.Comment: 8 pages, 5 figures, replaced to match version accepted by Ap
- …
