We study the radial distribution of subhalos and galaxies using
high-resolution cosmological simulations of galaxy clusters formed in the
concordance LCDM cosmology. In agreement with previous studies, we find that
the radial distribution of subhalos is significantly less concentrated than
that of the dark matter, when subhalos are selected using their present-day
gravitationally bound mass. We show that the difference in the radial
distribution is not a numerical artifact and is due to tidal stripping. The
subhalos in the cluster core lose more than 70% of their initial mass since
accretion, while the average tidal mass loss for halos near the virial radius
is ~30%. This introduces a radial bias in the spatial distribution of subhalos
when they are selected using their tidally truncated mass. We demonstrate that
the radial bias disappears almost entirely if subhalos are selected using their
mass or circular velocity at the accretion epoch. The comparisons of the
results of dissipationless simulations to the observed distribution of galaxies
in clusters are therefore sensitive to the selection criteria used to select
subhalo samples. Using the simulations that include cooling and starformation,
we show that the radial distribution of subhalos is in reasonable agreement
with the observed radial distribution of galaxies in clusters for
0.1<R/R200<2.0, if subhalos are selected using the stellar mass of galaxies.
The radial bias is minimized in this case because the stars are located in the
centers of dark matter subhalos and are tightly bound. The stellar mass of an
object is therefore approximately conserved as the dark matter is stripped from
the outer regions. Nevertheless, the concentration of the radial distribution
of galaxies is systematically lower than that of the dark matter.Comment: submitted to ApJ, 12 pages, 12 figure