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Forward

This document presents the results of the research work performed by Drs. G. S. Liaw and
J. D. Mo of Alabama A&M university for NASA/Marshall Space Flight Center, under
Grant NAG8-064. Two major tasks were accomplished during the course of this research
project. First, a new computer code was developed for the low thrust viscous nozzle
flowfield predictions by using a new LU scheme. This task was proposed at the beginning
of this contract. Second, the existing FDNS code was implemented to include the radiation
effect. This task was added into this project later. Results for a Carbon Dioxide and the
SSME nozzles are documented in this final report.
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1. Introduction

This research project has three objectives. The first objective is to compute the Carbon
Dioxide nozzle flow fields by using an existing computer code. This work has been

completed and documented previously[1]. The second objective is to develop a new
computer code for solving the compressible full Navier-Stokes equations for low thrust
type nozzle flow calculations. The low density effect is embedded through the no-slip
conditions on the wall boundaries. The third objective is to analyze the space shuttle Main
Engine (SSME) flow field in the combustor and the divergent nozzle with radiative effect.
The radiation model has been derived and embedded into the existing FDNS computer code
which is currently operational in ED32 NASA/MSFC. However, our main contribution is
tc}fdevelop a compressible Navier-Stokes code which is capable of handling the rarefication
effect.

Basically, there are two kind of numerical schemes to solve the time-dependent fluid
dynamics problems. They are explicit or implicit. The early developments, limited by the
computer capability, emphasized on the explicit methods. Several explicit numerical
schemes have been developed successfully, such as the Euler explicit method, the Lax
method, Leap frog method, MacCormack method, etc.. The obvious way to accelerate
convergence to a steady state or to save the computer time for unsteady problems is to
increase the size of the time step. However, it was found that the time step size for the
explicit schemes is seriously limited by the Courant-Friedrichs-Lewy (CFL) condition,
which requires that the region of dependence of the difference scheme must be a subset of
the region of dependence of the differential equation.

Generally speaking, implicit schemes are preferred when the time step limit imposed by an
explicit bound is much less than that imposed by the accuracy bound. The computation is
unconditionally stable for implicit schemes, and the time step is determined by the desired
level of accuracy. However, the implicit methods require to solve a large number of
coupled equations at each time step. Hence, the reduction in the number of time steps may
be outweighed by the increase in the number of arithmetic operations required for each time
step. As the computer technology advances, the restrictions on the storage and computing
time have been relaxed. The implicit methods become more popular in the CFD
community.

In this work, a Navier-Stokes code has been developed for the low thrust viscous nozzle
flow fields prediction. An implicit finite volume, in an arbitrary curvilinear coordinate
system, lower-upper(LU) scheme[2] is used to solve the governing Navier-Stokes
equations and species transportation equations. This scheme was originally developed by
Jameson, and extended to an axisymmetric coordinate system by this group. Sample
calculations of Carbon Dioxide nozzle flow are presented in this report to verify the validity
and efficiency of this code. The computed results are in reasonable agreement with the
experimental data. The bench mark date were chosen from Chou and Carter{3].



2.1. Formulation
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II. The LU-Code Development

ions: The governing Navier-Stokes equations are derived from the
basic physical laws of conservation of mass, momentum and ecnergy. These equations are

cast into the conservative forms in the cylindrical coordinate system
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This set of compressible flow equations govern the steady or unsteady; laminar or
turbulent, chemically reacting or nonreacting flow problems. S is the summation of all the

source terms, while 8=0 for the rectangular coordinate and d=1 for the axisymmetric

coordinate system.




Grid generation and coordinate transformation; The numerical solution of the system of the
governing partial differential equations can be greatly simplified by a well constructed grid
network. It is also true that a grid which is not well suited to the problem can produce
unsatisfactory results. Improper choice of grid point locations may lcad to an apparent
instability.

Early numerical solution by finite difference methods was restricted to problems where
suitable coordinate systems must be selected in order to solve the governing equations in
this compatible coordinate system. As more complex flowfields problems are under
consideration, general mappings have been employed to transform the physical plane into a
computational domain. Numerous advantages accrue when appropriate transfer procedures
are followed, for example, the body surface can be selected as a boundary in the
computational plane permitling easy application of surface boundary conditions. Also, in
general, transformation is used which lead to a uniformly spaced grid in the computational
plane while points in physical space may be unequally spaced.

For general purposes, consider the following general transformation, which can be
orthogonal or nonorthogonal,

¢ =¢ (x,y) (22)
n =n(xy) (23)

the computational grid points are located along the transformed coordinates (€, 1), which
can be designed to have both equal or unequal spacing in the computational plane

depending on the problems.

Generally, the grid generation can be accomplished by three different approaches.

* the complex variable method,
* the algebraic method and
* the differential equations method.

The complex variable technique has the advantage that the transformations used are analytic
or partially analytic as opposed to those methods that are entirely numerical.
Unfortunately, complex variable methods are restricted in two dimensional problem. For
this reason, the technique has limited applicability and will not be used in the present work.
Algebraic and differential equation techniques can be used on both two and three
dimensional problems with complex geometry, they are adopted in this code development.

To be consistent with the general grid system, a corresponding coordinate transformation
on the governing partial differential equation is required. The requirements of this
transformation for grid generation are:

*  The mapping is one - one correspondent, i.e. no singularity exists in the
mapping function.

*  The grid lines is smooth to assure that the derivatives of the mapping function are
continuous.

*  Grid points are closely clustered in the region where the large numerical errors
are expected.

*  Avoid excessive grid skewness.

For the transformation (2.2) and (2.3), the governing equations are converted from the
.3



physical domain (x, y) to the computational domain ( §. ). By using the chain rule of
partial differentiation, the partial derivative becomes

J J

—_—E — e 24
d d d

8y—§yﬁ+nyﬁ (2.5)

The matrices ( §x, §y, Nx, Ny ) appearing in these equations can be determined in the
following manner:

dg =& dx+ &y dy (2.6)
dn =n xdx+n ydy (2.7)

or in the matrix form

d d

41 o1
dn 1 [nx Ny JlLdy

In a similar manner, we can write
d X X d -
[ x]:[ § ’7][ 5] (2.9)
dyl [ye vyplldn

therefore:
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where the Jacobian

Y, X
n n
[—Y§ Xe ] (2.10)
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The terms Xg, X1 . Y€, and yn, are obtained directly by the central difference. Then, the

quantities éx’ ﬁy, Nx, Ny which appear in the governing equation, are evaluated from
equation (2.10).
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After the coordinate transformation, the governing equation (2.1) becomes:

2Q d(F-F,) d(F-F,) c';?(G—Gv)+ d(G-Gy)
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The strong conservation form of the above equations are

00, 9
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It can be written in a compact form,

9Q,9¢-f) =gy
Idt ¢ an

=S (2.12)

where

f=€xF+§y G, fy =5va +§va
g=nxF+ny G, fv =n<Fy +1yGy

and S the source term is unchanged by the transformation.

2.2. Numerical Procedures

ation: For simplicity, the
der1vat10n of the equauons below is carned out in the Cartesian coordinate system, then the
results are transformed onto a general coordinate system.



Using the implicit scheme with central differencing, Eq. (2.12) can be formulated as

Qn+l=Qn_p6 t{a’: (r(Qn+l )_f'v(Qn+l)+a" (g(QrH-l )_gv(Qn+l)_Snﬂ ]
-(1-pr8¢fac (f(QMI1-£,(Q")+d, (g(Q")-g,(Q"]-8"] (2.13)

where dg and dyy are difference operators of /9, d/dn, and B is a positive number

between 0 and 1, which is used as an adjust parameter, with f=0 for an explicit scheme

and PB=1 for an implicit scheme. f=1/2 is designated for the Crank-Nicolson scheme
which has a second order accuracy in the time discretization.
The Jacobian matrices are

QU

A=8(1“-13’,,) B=9(G-GY) and He

S
75 39 > (2.14)

O

and the increment of the conservative variable Q is

5§Q=Q"1-qQ" 2.15)

The scheme is linearized by setting

fQ™h =rQ@m+2Lsq+osaP)

2Q

g(Q™*h) = g(Q“)+m6 Q+0O(|é Q| )

S(Q“+1)=S(Q“)+a S5q+0(]5 QP (2.16)

Q

where terms of the second and higher order have been omitted. This yields,
Q™! Q" =-paro; ((Q") - Q"))+d; Aa &}
- Py (8Q™1-84(Q"))+3,BBRQ |
-pa-s*-H&

~(1-P)8e oy (f@™)~£,(Q"))+9, (2Q" -5, Q™)-s°] (2.17)

In compact form, the final d-form of equation (2.17) becomes

{1+ B & (g aa +3, BB-H]}+ AcR=0 (2.18)

where
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M"'_(')'Q_=61A+§,\‘ B (2.19)
BB "‘5‘03"‘ M A+, B (2.20)
as
HH ==—==H (2.21)
and
R={d; (1-£, )}+d; (g-2v)}-S" (2.22)
Lower-Upper (LU) factored implicit scheme: There are various ways to formulate an LU
scheme. We begin with the tfollowing procedures, by setting,
o= ( E)g* +0g7) (2.23)
with the definitions of matrices
AAY =1/2 (AA+Vp D (2.25)
AA" =1/2(AA-vp D (2.26)
then
Of AA = a§+ AA" +9g AAY (2.27)
In the similar manner,
— .+ RR- -
where,
BB*=1/2(BB+vgI) (2.29)
BB- =1/2(BB -vgl) (2.30)
- After substitution, equation (3.7) becomes
{I+ﬂ At (aé'AA * +9g"AA “+9,BB*+9," BB -H )} §Q=-AR 2.31)

where ag' and dy,” are defined as backward-difference operators and Bg* and 8n+ are
defined as forward difference operators.

The values v and vy are chosen to construct AAt, AA-, BBt, BB- so that the

eigenvalues of "+" matrices are nonnegative and those of "-" matrices are nonpositive.
The development of these matrices is extremely important for the success of the LU-type

scheme.
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Jameson and Yoon [4] chose

vazmax ( |xsl) (2.32)
vg2max ( |agh (2.33)

where A 5 and A are the eigenvalues of matrix AA and BB.

After some manipulations, equation ( 2.31 ) becomes:

{I +B A |(AA *~AA )+ BB* -BB~ )]+ Ba (Jé'AA * +8¢’AA - +9n‘BB‘ +3,7‘ BB™ HAA *-AA - (BB* -BB") -H } 5Q

—-AR (2.34)
From (2.25), (2.26), (2.29) and (2.30),
AA+-AA™ =va |
BB*-BB- = vpg|
Equation (2.34 ) can be factored in the following forms
{I+ﬁ At[(AA *-AA ')+(BB+-BB')]+B At (3§'AA *+J, BB*-AA *-BB-H )}
*{1+p At|(AA *-AA ") +(BB*-BB")|+ f &[5, AA T+,'BB T+ AA '+BB‘)} 5Q
=—[1+ B At(v,+vp)]AtR (2.35)

This factorization is arbitrary as long as the final numerical scheme is stable. On the other
hand, a further improvement on the scheme can be done from this point.

. Based on the discretized governing
equation (2.35), a finite-volume method is applied to discrete the spatial variable and
separated time and spatial discretization is involved to assure a steady State solution
independent of the time step. The finite volume formulation provides a convenient treatment
of complex geometry and avoids the problems of metric singularity which are usually
associated with the finite difference methods.

The control volume is shown in the Fig. 1. Point P is chosen as the control point located at
the centroid of the control volume.
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Fig. 1. Control volume and control point

By integrating the equation (2.35) over the control volume, the left hand side of the
equation take the value at the control point as its average value. The first two terms in the
right hand side constitute a divergent vectors and they are envoluated by a surface
integration after applying the Gauss theorem. The residual source term takes the value at the
control point.

In order to match the approximated factorization of the lower-upper triangular matrix form,
the derivatives in the left hand side is discretized by the first order backward and forward
difference schemes, such that

srqre2iiy orqra i (2.36)
¢ AL~ § AE*
Q. QI Q.. QM
o L r i,j=1 +0_ ij+1 i,
Q=i 9y QUi 2.37)

where the subscripts (i,j) represent the location of the grid point (§,n) and superscript
stands for the time level, in which superscript n means at the time t and n+1 means at time

t+ At. AE™ isthe projected spatial distance between the control point (i-1,j) and (i,j) in §
coordinate direction and An is the projected spatial distance between the control point (i,j-1)
and (i,j) in | coordinate direction. A&* and An* are similarly defined.

After the discretization of the partial differential equations, they become a system of
algebraic equations. The continuous governing partial differential equations have been
replaced by a set of discretized finite difference equations which are valid only at the
discretized grid points. At each grid point, a finite difference equation is created and the
connection among all the grid points in the solution domain is hold by the forward and
backward finite difference operators. With proper boundary conditions at the boundaries
of the solution domain and initial conditions at the beginning of the physical process for the
unsteady problems, the set of the algebraic equations can be solved by proper numerical
procedures.

A mathematical problem is described by the following algebraic equations to illustrate the
essence of the lower-upper factorization procedures of the matrix conversion.

AX=b (2.38)

If the coefficient matrix A can be decomposed into a lower-upper matrix multiplication
9



form, then the equation (2.38) can be rewritten as
LUX=b (2.39)

Then we can solve this equation in two steps. At first, Iet Y=U X, equation (3.31)
becomes

LY=b (2.40)

Because the matrix L is a lower triangular matrix, Its inverse L-1 can be easily determined
by the forward Gaussian elimination method, or

Y=Llbp (2.41)
Then, looking for the solution for x such that
UX =Y (2.42)

Since U is an upper triangular matrix, the matrix inverse can be found by the one step
backward Gaussian elimination method,

X =Uly (2.43)

The lower-upper factorization procedure in the present research follows the same
procedures as described above. The dimension of the final coefficient matrix is

[CI=[dx])x{IxD]

where I and J are the grid number in the £ and 7 directions respectively.

Boundary conditions: Two types of geometrical boundaries are considered. One is solid
walls, the other is non-solid walls which includes inlets, the symmetric axis, and planes of

symmetry.

Solid walls: The no-slip conditions are applied on any solid walls, . In addition, zero
pressure gradient are employed.

Inlet: For generality, any part of the boundaries is referred as inlet where the flow is
inward to the solution domain. At the inlet, the flow variables are assumed known. That
is, the velocities, static pressure and temperature are specified.

Exit: In the same way, any part of the boundary is classified as exit where the flow is
outward to the solution domain. For generality, the exit is divided into two categories,
which are supersonic or subsonic exits. For supersonic exits, no boundary conditions are
needed because its hyperbolic nature. For subsonic exits, back pressure must be specified,
and other flow variables apply

2%
on (2.44)

where ¢ represents any flow variable except the static pressure.

It should be noted that even for supersonic exit, a boundary layer exists near the exit wall.
So a known backpressure is applied in the subsonic boundary layer region.

10



Initial condition: Our interest is to achieve stcady state solutions even though the
procedures described above are valid for general unsteady flow problems. Therefore, only
an appropriate initial solution is needed to start the time-iterative scheme, and finally the
steady state solution is reached through the time marching process. For nozzle flows, an
one dimensional inviscid supersonic solution is used as the initial condition.

2.3. Computer Program

The computer program has been structured in a general manner. At the present state, the
program can treat compressible flows, turbulent as well as lamilar, chemically reactive as
well as non-reactive, internal as well as external, two-dimensional or axisymmetric
arbitrary geometry problems. Variable transport properties are also included.

The program structure is written in a modular form so that subroutines for specific physical
effects can be flagged only when those effects are needed. After its execution, the main
processor writes a considerable amount of information to external data files. This
information is used by the postprocessor to produce a variety of computer graphic displays.
These data will be made use of to restart the calculations in the future work. Most physical
and numerical control parameters can be changed which gives the users considerable
flexibility for their specific purposes. the basic flow diagram of the computer program is
shown in Fig. 2.

2.4. Carbon Dioxide Nozzle Flow Calculation

For nozzle flowfield calculations, five reservoir pressures (29.4, 14.7, 7.35, 3.7,1.85)psi
were run and shown in Fig.3. The reservoir temperature is fixed at 600CF. Due to the
cryogenic flow conditions in downstream, all the variable transport properties including the
specific heat ratio are curve-fitted and extrapolated to extremely low temperature, shown in
Fig.4. As for the boundary layer development at different chamber pressures, the velocity
profiles and the boundary thicknesses at the nozzle exit are shown in Fig.5(a) and 5(b),
respectively. The boundary layer thicknesses is defined at the boundary edge where the
velocity magnitude is 99% of the core flow. It is found that the lower the chamber
pressure, the thicker the boundary layer at the nozzle exit. This flow characteristics is due
to the Reynolds number resulted from the low chamber pressure.For the chamber pressure
1.85psi, the boundary layer thickness is about one third of nozzle exit radius. As a result,
the conventional MOC/BL concept is no longer applicable. The wall pressures of both
computed and test data are shown in Fig.6. Fig.6(a) and 6(b) show the wall pressure
distributions in linear and logarithmic scales. They are in good agreement. Test data
asymptotically deteriorate as the exit pressures and temperatures approach the liquid-vapor
saturation line in the CO2-phase diagram. Condensation phenomena in the supersonic gas
stream remains an unexplored research topics.For chamber pressure less than 1.85, both
rarefication effect and cryogenic effect create physical as well as numerical instability. Our
computer experiments to impose an explicit slip wall boundary conditions have failed. The
implicit boundary conditions become the necessary step for next trials.

IIL. FDNS Code Implementation

Currently, the FDNS Code has been comprehensively used for the prediction of the SSME
nozzle characteristics in NASA/MSFC[5]. The basic equations employed in the code are
the axisymmetric, multi-component conservation equations. A generalized form of these
equations written in curvilinear coordinates is given by

11
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where J, Uj and G; j represent the Jacobian of the coordinate transformation, contravariant
velocities and diffusion metrics respectively.

An unpaid scheme was employed o approximate the convective terms of the momentum,
energy and continuity equations. The scheme is based on second and fourth order central
differencing with artificial dissipation. First order upwinding is used for the species and
turbulence equations, since the parameters involved are positive quantities. Different
eigenvalues are used for weighing the dissipation terms depending on the conserved
quantity being evaluated, in order to give correct diffusion fluxes near wall boundaries.

For the SSME combuster, the temperature is in the value of 60000R. It is natural to ask if
the wall heat flux includes the radiation contribution. We have added this capability into the
FDNS code and delivered it to MSFC ED32, and results were published in ref.[6].

The radiation heat transfer has been hypothesized by a six-flux radiation model, which is
based on the Schuster-Hanaker approximation in astrophysical research. For an
absorbing-emitting gray medium in local thermodynamic equilibrium, the radiation
transport equations describing the variations of the fluxes along six direction can be
reduced to the following three second-order ordinary differential equations:

d I 4R S
— ——— = - — ~R. -
dx(a-o-s dx ) a(R, [3)‘.’3(2Rx Re-Rg )

l'd_ —{'T& =3(Rr—E)+§(2Rr‘Rx-R6 )
T gpsen & 3

r

1d{ 1 &R S
| e bl 1= 3 (R, ~E)+=(2R, ~R_ -R
rd9(a+sxd9) *[Rg ~E)+ 3 (2Rs -R, )

Where the composite-fluxes Ry, Ry, and Rg are defined as :

In these equations, Ix+, I+, Iq+, Ix-, I- and Ig™ are the radiation energy fluxes along

the positive and negative coordinate directions. The scattering coefficient, s, is defined as
the scattering radiation energy per unit length.

The FDNS has been coded and implemented. The calculations have been conducted for the
SSME combustor and nozzle. Fig.7 shows the configuration and the computational grid.
The grid was generated with more grid point near the wall to predict the large gradient
there. Fig.8 shows the isotherm and velocity vector plot of the entire flowfield and Fig.9

12



shows the averaged radiation flux contours and velocity vector plot. Fig.10 shows the
enlarged averaged radiation flux contours in the throat area. Comparisons have been made
for the heat flux over the wall and temperature along the centerline with and without
radiation contribution. The results are shown in Fig.11 and Fig.12, respectively.

IV. Personnel

In this project, Dr. G. S. Liaw serves as the Principal Investigator to coordinate all the
research activities. Dr. J. D. Mo, a Research Assistant Professor, has been working in full
time to develop the LU-code since September 15, 1989 until the project was finished.

VY. Conclusions

A new computer code for analyzing the axisymmetric nozzle flow with variable gamma has
been developed. The validity of this code is demonstrated by the comparisons of present
calculations with experimental data. The code has been used to simulate the flowfield in a
Carbon Dioxide nozzle having an area ratio of 40. The radiation modeling within the SSME
combustor/nozzle has shown that the radiation heat transfer has relatively significant
contribution along the nozzle throat, but little effect downstream. The total effect on the
wall heat flux is within 5%, which is consistent with the qualitative analysis from MSFC in
house results. The code has shown to be efficient and accurate for the flow conditions
considered in the present study.
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iv) 3.7 and v) 1.85 psi
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Fig. 5. Velocity profiles and boundary layer thickness
at nozzle exit
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Fig. 7. SSME combustor/nozzle configuration and
computational grid

Fig. 8. Isothermal and velocity vector plot of flowfield
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Fig. 9. Averaged radiation flux contours and
velocity vector plot
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Fig. 10. Enlarged averaged radiation flux contours and
velocity vector plot in the throat area
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Fig. 11. The relative difference of heat flux over the wall
with and without radiation contribution

0.01

0.00

T
0.5 0.5 1.5

ol

Fig. 12. The relative difference of the temperature
along the centerline
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