2,768 research outputs found

    Chemical evolution of star clusters

    Full text link
    I discuss the chemical evolution of star clusters, with emphasis on old globular clusters, in relation to their formation histories. Globular clusters clearly formed in a complex fashion, under markedly different conditions from any younger clusters presently known. Those special conditions must be linked to the early formation epoch of the Galaxy and must not have occurred since. While a link to the formation of globular clusters in dwarf galaxies has been suggested, present-day dwarf galaxies are not representative of the gravitational potential wells within which the globular clusters formed. Instead, a formation deep within the proto-Galaxy or within dark-matter minihaloes might be favoured. Not all globular clusters may have formed and evolved similarly. In particular, we may need to distinguish Galactic halo from Galactic bulge clusters.Comment: 27 pages, 2 figures. To appear as invited review article in a special issue of the Phil. Trans. Royal Soc. A: Ch. 6 "Star clusters as tracers of galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed. LaTeX, requires rspublic.cls style fil

    A Spitzer IRAC Census of the Asymptotic Giant Branch Populations in Local Group Dwarfs. II. IC 1613

    Full text link
    We present Spitzer Space Telescope IRAC photometry of the Local Group dwarf irregular galaxy IC 1613. We compare our 3.6, 4.5, 5.8, and 8.0 micron photometry with broadband optical photometry and find that the optical data do not detect 43% and misidentify an additional 11% of the total AGB population, likely because of extinction caused by circumstellar material. Further, we find that a narrowband optical carbon star study of IC 1613 detects 50% of the total AGB population and only considers 18% of this population in calculating the carbon to M-type AGB ratio. We derive an integrated mass-loss rate from the AGB stars of 0.2-1.0 x 10^(-3) solar masses per year and find that the distribution of bolometric luminosities and mass-loss rates are consistent with those for other nearby metal-poor galaxies. Both the optical completeness fractions and mass-loss rates in IC 1613 are very similar to those in the Local Group dwarf irregular, WLM, which is expected given their similar characteristics and evolutionary histories.Comment: Accepted by ApJ, 26 pages, 10 figures, version with high-resolution figures available at: http://webusers.astro.umn.edu/~djackson

    Solid-phase C60 in the peculiar binary XX Oph?

    Get PDF
    We present infrared spectra of the binary XX Oph obtained with the Infrared Spectrograph on the Spitzer Space Telescope. The data show some evidence for the presence of solid C60– the first detection of C60 in the solid phase – together with the well-known ‘unidentified infrared’ emission features. We suggest that, in the case of XX Oph, the C60 is located close to the hot component, and that in general it is preferentially excited by stars having effective temperatures in the range 15 000–30 000 K. C60 may be common in circumstellar environments, but unnoticed in the absence of a suitable exciting source

    Spitzer SAGE-SMC Infrared Photometry of Massive Stars in the Small Magellanic Cloud

    Get PDF
    We present a catalog of 5324 massive stars in the Small Magellanic Cloud (SMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 3654 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer, SAGE-SMC survey database, for which we present uniform photometry from 0.3-24 um in the UBVIJHKs+IRAC+MIPS24 bands. We compare the color magnitude diagrams and color-color diagrams to those of the Large Magellanic Cloud (LMC), finding that the brightest infrared sources in the SMC are also the red supergiants, supergiant B[e] (sgB[e]) stars, luminous blue variables, and Wolf-Rayet stars, with the latter exhibiting less infrared excess, the red supergiants being less dusty and the sgB[e] stars being on average less luminous. Among the objects detected at 24 um are a few very luminous hypergiants, 4 B-type stars with peculiar, flat spectral energy distributions, and all 3 known luminous blue variables. We detect a distinct Be star sequence, displaced to the red, and suggest a novel method of confirming Be star candidates photometrically. We find a higher fraction of Oe and Be stars among O and early-B stars in the SMC, respectively, when compared to the LMC, and that the SMC Be stars occur at higher luminosities. We estimate mass-loss rates for the red supergiants, confirming the correlation with luminosity even at the metallicity of the SMC. Finally, we confirm the new class of stars displaying composite A & F type spectra, the sgB[e] nature of 2dFS1804 and find the F0 supergiant 2dFS3528 to be a candidate luminous blue variable with cold dust.Comment: 23 pages, 17 figures, 5 tables, accepted for publication in the Astronomical Journa

    Renal and hemodynamic responses to bumetanide in hypertension: Effects of nitrendipine

    Get PDF
    Renal and hemodynamic responses to bumetanide in hypertension: Effects of nitrendipine. The effects of a calcium antagonist on the response to a loop diuretic were tested in eight hypertensive patients while they received 120mmol · 24hr-1 of dietary Na. Nitrendipine (N; 20 mg) or placebo (P) was administered twice daily for five days and bumetanide (B; 1 mg, i.v.) for the last three days of each period. Cardiac index (CI) was measured during tilt. B alone significantly (P < 0.05; N = 7) reduced CI and increased total peripheral resistance; N prevented these effects of B. Neither drug altered BP consistently. Although three days of B increased plasma renin activity (PRA) during P and N, it increased plasma aldosterone (PAldo) only during P (P, 4.4 ± 1.3 to 7.6 ± 1.0; P < 0.05. N, 5.7 ± 1.3 to 6.0 ± 1.3; pg · liter-1; NS). B increased Na excretion without changing GFR or RPF; this was followed by 18 hours of decreased renal Na excretion. These actions were unchanged by N. N did not change the cumulative excretion of B (P, 268 ± 35 vs. N, 217 ± 21 µg) or the relationship between Na excretion and the log of B excretion. However, Na excretion was increased (P < 0.05) by 40 to 60% in the six hour period following the first two doses of N. Therefore, the cumulative Na balance was more negative during five days of N (P, -47 ± 17 vs. N, -108 ± 24 mmol; P < 0.05). The effect of N and B on Na balance were independent. In conclusion, short-term administration of N: 1) increases CI and reduces TPRI in the post-diuretic state; 2) blunts B-induced increase in PAldo without modifying the rise in PRA; 3) does not change B kinetics or dynamics or the post-diuretic period of renal Na retention; 4) causes negative Na balance which is additive with that produced by B

    The Spitzer discovery of a galaxy with infrared emission solely due to AGN activity

    Full text link
    We present a galaxy (SAGE1CJ053634.78-722658.5) at a redshift of 0.14 of which the IR is entirely dominated by emission associated with the AGN. We present the 5-37 um Spitzer/IRS spectrum and broad wavelength SED of SAGE1CJ053634, an IR point-source detected by Spitzer/SAGE (Meixner et al 2006). The source was observed in the SAGE-Spec program (Kemper et al., 2010) and was included to determine the nature of sources with deviant IR colours. The spectrum shows a redshifted (z=0.14+-0.005) silicate emission feature with an exceptionally high feature-to-continuum ratio and weak polycyclic aromatic hydrocarbon (PAH) bands. We compare the source with models of emission from dusty tori around AGNs from Nenkova et al. (2008). We present a diagnostic diagram that will help to identify similar sources based on Spitzer/MIPS and Herschel/PACS photometry. The SED of SAGE1CJ053634 is peculiar because it lacks far-IR emission and a clear stellar counterpart. We find that the SED and the IR spectrum can be understood as emission originating from the inner ~10 pc around an accreting black hole. There is no need to invoke emission from the host galaxy, either from the stars or from the interstellar medium, although a possible early-type host galaxy cannot be excluded based on the SED analysis. The hot dust around the accretion disk gives rise to a continuum, which peaks at 4 um, whereas the strong silicate features may arise from optically thin emission of dusty clouds within ~10 pc around the black hole. The weak PAH emission does not appear to be linked to star formation, as star formation templates strongly over-predict the measured far-IR flux levels. The SED of SAGE1CJ053634 is rare in the local universe but may be more common in the more distant universe. The conspicuous absence of host-galaxy IR emission places limits on the far-IR emission arising from the dusty torus alone.Comment: Accepted for publication in A&A, 7 pages, 6 figure

    Cochlear Implantation after Bacterial Meningitis in Infants Younger Than 9 Months

    Get PDF
    Objective. To describe the audiological, anesthesiological, and surgical key points of cochlear implantation after bacterial meningitis in very young infants. Material and Methods. Between 2005 and 2010, 4 patients received 7 cochlear implants before the age of 9 months (range 4–8 months) because of profound hearing loss after pneumococcal meningitis. Results. Full electrode insertions were achieved in all operated ears. The audiological and linguistic outcome varied considerably, with categories of auditory performance (CAP) scores between 3 and 6, and speech intelligibility rating (SIR) scores between 0 and 5. The audiological, anesthesiological, and surgical issues that apply in this patient group are discussed. Conclusion. Cochlear implantation in very young postmeningitic infants is challenging due to their young age, sequelae of meningitis, and the risk of cochlear obliteration. A swift diagnostic workup is essential, specific audiological, anesthesiological, and surgical considerations apply, and the outcome is variable even in successful implantations

    Mid Infrared Photometry of Mass-Losing AGB Stars

    Get PDF
    We present ground-based mid-infrared imaging for 27 M-, S- and C-type Asymptotic Giant Branch (AGB) stars. The data are compared with those of the database available thanks to the IRAS, ISO, MSX and 2MASS catalogues. Our goal is to establish relations between the IR colors, the effective temperature TeffT_{eff}, the luminosity LL and the mass loss rate M˙\dot M, for improving the effectiveness of AGB modelling. Bolometric (absolute) magnitudes are obtained through distance compilations, and by applying previously-derived bolometric corrections; the variability is also studied, using data accumulated since the IRAS epoch. The main results are: i) Values of LL and M˙\dot M for C stars fit relations previously established by us, with Miras being on average more evolved and mass losing than Semiregulars. ii) Moderate IR excesses (as compared to evolutionary tracks) are found for S and M stars in our sample: they are confirmed to originate from the dusty circumstellar environment. iii) A larger reddening characterizes C-rich Miras and post-AGBs. In this case, part of the excess is due to AGB models overestimating TeffT_{eff} for C-stars, as a consequence of the lack of suitable molecular opacities. This has a large effect on the colors of C-rich sources and sometimes disentangling the photospheric and circumstellar contributions is difficult; better model atmospheres should be used in stellar evolutionary codes for C stars. iv) The presence of a long-term variability at mid-IR wavelengths seems to be limited to sources with maximum emission in the 8 -- 20 μ\mum region, usually Mira variables (1/3 of our sample). Most Semiregular and post-AGB stars studied here remained remarkably constant in mid-IR over the last twenty years.Comment: Accepted for publication in the Astronomical Journal - 35 pages (in preprint), 9 figures, 5 table

    Local Plaquette Physics as Key Ingredient of High-Temperature Superconductivity in Cuprates

    Full text link
    A major pathway towards understanding complex systems is given by exactly solvable reference systems that contain the essential physics of the system. For the ttUt-t'-U Hubbard model, the four-site plaquette is known to have a quantum critical point in the UμU-\mu space where states with electron occupations N=2,3,4N=2, 3, 4 per plaquette are degenerate [Phys. Rev. B {\bf 94}, 125133 (2016)]. We show that such a critical point in the lattice causes an instability in the particle-particle singlet d-wave channel and manifests some of the essential elements of the cuprate superconductivity. For this purpose we design an efficient superperturbation theory -- based on the dual fermion approach -- with the critical plaquette as the reference system. Thus, the perturbation theory already contains the relevant d-wave fluctuations from the beginning via the two-particle correlations of the plaquette. We find that d-wave superconductivity remains a leading instability channel under reasonably broad range of parameters. The next-nearest-neighbour hopping tt' is shown to play a crucial role in a formation of strongly bound electronic bipolarons whose coherence at lower temperature results in superconductivity. The physics of the pseudogap within the developed picture is also discussed.Comment: 25 pages, 28 figure

    The VLT-FLAMES Tarantula Survey XVI. The optical+NIR extinction laws in 30 Doradus and the photometric determination of the effective temperatures of OB stars

    Full text link
    Context: The commonly used extinction laws of Cardelli et al. (1989) have limitations that, among other issues, hamper the determination of the effective temperatures of O and early B stars from optical+NIR photometry. Aims: We aim to develop a new family of extinction laws for 30 Doradus, check their general applicability within that region and elsewhere, and apply them to test the feasibility of using optical+NIR photometry to determine the effective temperature of OB stars. Methods: We use spectroscopy and NIR photometry from the VLT-FLAMES Tarantula Survey and optical photometry from HST/WFC3 of 30 Doradus and we analyze them with the software code CHORIZOS using different assumptions such as the family of extinction laws. Results: We derive a new family of optical+NIR extinction laws for 30 Doradus and confirm its applicability to extinguished Galactic O-type systems. We conclude that by using the new extinction laws it is possible to measure the effective temperatures of OB stars with moderate uncertainties and only a small bias, at least up to E(4405-5495) ~ 1.5 mag.Comment: Accepted for publication in A&A. Revised version corrects language and fixes typos (one of them caught by David Nicholls). Figure 4 has poor quality due to the size restrictions imposed by arXi
    corecore