186 research outputs found

    Time dependence of Bragg forward scattering and self-seeding of hard x-ray free-electron lasers

    Get PDF
    Free-electron lasers (FELs) can now generate temporally short, high power x-ray pulses of unprecedented brightness, even though their longitudinal coherence is relatively poor. The longitudinal coherence can be potentially improved by employing narrow bandwidth x-ray crystal optics, in which case one must also understand how the crystal affects the field profile in time and space. We frame the dynamical theory of x-ray diffraction as a set of coupled waves in order to derive analytic expressions for the spatiotemporal response of Bragg scattering from temporally short incident pulses. We compute the profiles of both the reflected and forward scattered x-ray pulses, showing that the time delay of the wave τ\tau is linked to its transverse spatial shift Δx\Delta x through the simple relationship Δx=cτcotθ\Delta x = c\tau \cot\theta, where θ\theta is the grazing angle of incidence to the diffracting planes. Finally, we apply our findings to obtain an analytic description of Bragg forward scattering relevant to monochromatically seed hard x-ray FELs.Comment: 11 pages, 6 figure

    TEMPERATURE AND RELATIVITY

    Get PDF
    We investigate whether inertial thermometers moving in a thermal bath behave as being hotter or colder. This question is directly related to the classical controversy concerning how temperature transforms under Lorentz transformations. Rather than basing our arguments on thermodynamical hypotheses, we perform straightforward calculations in the context of relativistic quantum field theory. For this purpose we use Unruh-DeWitt detectors, since they have been shown to be reliable thermometers in semi-classical gravity. We believe that our discussion helps in definitely clarifying this issue.Comment: 9 pages, 1 figure available upon reques

    A Convergent Method for Calculating the Properties of Many Interacting Electrons

    Full text link
    A method is presented for calculating binding energies and other properties of extended interacting systems using the projected density of transitions (PDoT) which is the probability distribution for transitions of different energies induced by a given localized operator, the operator on which the transitions are projected. It is shown that the transition contributing to the PDoT at each energy is the one which disturbs the system least, and so, by projecting on appropriate operators, the binding energies of equilibrium electronic states and the energies of their elementary excitations can be calculated. The PDoT may be expanded as a continued fraction by the recursion method, and as in other cases the continued fraction converges exponentially with the number of arithmetic operations, independent of the size of the system, in contrast to other numerical methods for which the number of operations increases with system size to maintain a given accuracy. These properties are illustrated with a calculation of the binding energies and zone-boundary spin- wave energies for an infinite spin-1/2 Heisenberg chain, which is compared with analytic results for this system and extrapolations from finite rings of spins.Comment: 30 pages, 4 figures, corrected pd

    Quantum Hall Effect in Three Dimensional Layered Systems

    Full text link
    Using a mapping of a layered three-dimensional system with significant inter-layer tunneling onto a spin-Hamiltonian, the phase diagram in the strong magnetic field limit is obtained in the semi-classical approximation. This phase diagram, which exhibit a metallic phase for a finite range of energies and magnetic fields, and the calculated associated critical exponent, ν=4/3\nu=4/3, agree excellently with existing numerical calculations. The implication of this work for the quantum Hall effect in three dimensions is discussed.Comment: 4 pages + 4 figure

    In vitro Efficacy of a Novel Guanosine-Analog Phosphonate

    Get PDF
    Actinic keratosis, a frequent carcinoma in situ of non-melanoma skin cancer (NMSC), can transform into life-threatening cutaneous squamous cell carcinoma. Current treatment is limited due to low complete clearance rates and asks for novel therapeutic concepts; the novel purine nucleotide analogue OxBu may be an option. In order to enhance skin penetration, solid lipid nanoparticles (SLN, 136-156 nm) were produced with an OxBu entrapment efficiency of 96.5 ± 0.1%. For improved preclinical evaluation, we combined tissue engineering with clinically used keratin-18 quantification. Three doses of 10-3 mol/l OxBu, dissolved in phosphate-buffered saline as well as loaded to SLN, were effective on reconstructed NMSC. Tumour response and apoptosis induction were evaluated by an increase in caspase-cleaved fragment of keratin-18, caspase-7 activation as well as by reduced expression of matrix metallopeptidase-2 and Ki-67. OxBu efficacy was superior to equimolar 5-fluorouracil solution, and thus the drug should be subjected to the next step in preclinical evaluation

    Einstein's fluctuation formula. A historical overview

    Get PDF
    A historical overview is given on the basic results which appeared by the year 1926 concerning Einstein's fluctuation formula of black-body radiation, in the context of light-quanta and wave-particle duality. On the basis of the original publications (from Planck's derivation of the black-body spectrum and Einstein's introduction of the photons up to the results of Born, Heisenberg and Jordan on the quantization of a continuum) a comparative study is presented on the first line of thoughts that led to the concept of quanta. The nature of the particle-like fluctuations and the wave-like fluctuations are analysed by using several approaches. With the help of the classical probability theory, it is shown that the infinite divisibility of the Bose distribution leads to the new concept of classical poissonian photo-multiplets or to the binary photo-multiplets of fermionic character. As an application, Einstein's fluctuation formula is derived as a sum of fermion type fluctuations of the binary photo-multiplets.Comment: 34 page

    An asymptotic form of the reciprocity theorem with applications in x-ray scattering

    Full text link
    The emission of electromagnetic waves from a source within or near a non-trivial medium (with or without boundaries, crystalline or amorphous, with inhomogeneities, absorption and so on) is sometimes studied using the reciprocity principle. This is a variation of the method of Green's functions. If one is only interested in the asymptotic radiation fields the generality of these methods may actually be a shortcoming: obtaining expressions valid for the uninteresting near fields is not just a wasted effort but may be prohibitively difficult. In this work we obtain a modified form the reciprocity principle which gives the asymptotic radiation field directly. The method may be used to obtain the radiation from a prescribed source, and also to study scattering problems. To illustrate the power of the method we study a few pedagogical examples and then, as a more challenging application we tackle two related problems. We calculate the specular reflection of x rays by a rough surface and by a smoothly graded surface taking polarization effects into account. In conventional treatments of reflection x rays are treated as scalar waves, polarization effects are neglected. This is a good approximation at grazing incidence but becomes increasingly questionable for soft x rays and UV at higher incidence angles. PACs: 61.10.Dp, 61.10.Kw, 03.50.DeComment: 19 pages, 4 figure

    Non-universal equilibrium crystal shape results from sticky steps

    Full text link
    The anisotropic surface free energy, Andreev surface free energy, and equilibrium crystal shape (ECS) z=z(x,y) are calculated numerically using a transfer matrix approach with the density matrix renormalization group (DMRG) method. The adopted surface model is a restricted solid-on-solid (RSOS) model with "sticky" steps, i.e., steps with a point-contact type attraction between them (p-RSOS model). By analyzing the results, we obtain a first-order shape transition on the ECS profile around the (111) facet; and on the curved surface near the (001) facet edge, we obtain shape exponents having values different from those of the universal Gruber-Mullins-Pokrovsky-Talapov (GMPT) class. In order to elucidate the origin of the non-universal shape exponents, we calculate the slope dependence of the mean step height of "step droplets" (bound states of steps) using the Monte Carlo method, where p=(dz/dx, dz/dy)$, and represents the thermal averag |p| dependence of , we derive a |p|-expanded expression for the non-universal surface free energy f_{eff}(p), which contains quadratic terms with respect to |p|. The first-order shape transition and the non-universal shape exponents obtained by the DMRG calculations are reproduced thermodynamically from the non-universal surface free energy f_{eff}(p).Comment: 31 pages, 21 figure

    X-ray standing wave and reflectometric characterization of multilayer structures

    Get PDF
    Microstructural characterization of synthetic periodic multilayers by x-ray standing waves have been presented. It has been shown that the analysis of multilayers by combined x-ray reflectometry (XRR) and x-ray standing wave (XSW) techniques can overcome the deficiencies of the individual techniques in microstructural analysis. While interface roughnesses are more accurately determined by the XRR technique, layer composition is more accurately determined by the XSW technique where an element is directly identified by its characteristic emission. These aspects have been explained with an example of a 20 period Pt/C multilayer. The composition of the C-layers due to Pt dissolution in the C-layers, Ptx_{x}C1x_{1-x}, has been determined by the XSW technique. In the XSW analysis when the whole amount of Pt present in the C-layers is assumed to be within the broadened interface, it l eads to larger interface roughness values, inconsistent with those determined by the XRR technique. Constraining the interface roughness values to those determined by the XRR technique, requires an additional amount of dissolved Pt in the C-layers to expl ain the Pt fluorescence yield excited by the standing wave field. This analysis provides the average composition Ptx_{x}C1x_{1-x} of the C-layers .Comment: 12 pages RevTex, 10 eps figures embedde
    corecore