1,675 research outputs found

    Testing Modified Newtonian Dynamics with Rotation Curves of Dwarf and Low Surface Brightness Galaxies

    Get PDF
    Dwarf and low surface brightness galaxies are ideal objects to test modified Newtonian dynamics (MOND), because in most of these galaxies the accelerations fall below the threshold below where MOND supposedly applies. We have selected from the literature a sample of 27 dwarf and low surface brightness galaxies. MOND is successful in explaining the general shape of the observed rotation curves for roughly three quarters of the galaxies in the sample presented here. However, for the remaining quarter, MOND does not adequately explain the observed rotation curves. Considering the uncertainties in distances and inclinations for the galaxies in our sample, a small fraction of poor MOND predictions is expected and is not necessarily a problem for MOND. We have also made fits taking the MOND acceleration constant, a_0, as a free parameter in order to identify any systematic trends. We find that there appears to be a correlation between central surface brightness and the best-fit value of a_0, in the sense that lower surface brightness galaxies tend to have lower a_0. However, this correlation depends strongly on a small number of galaxies whose rotation curves might be uncertain due to either bars or warps. Without these galaxies, there is less evidence of a trend, but the average value we find for a_0 ~ 0.7*10^-8 cm s^-2 is somewhat lower than derived from previous studies. Such lower fitted values of a_0 could occur if external gravitational fields are important.Comment: 12 pages, accepted for publication in Ap

    Testing Modified Newtonian Dynamics with Low Surface Brightness Galaxies --Rotation curve fits-

    Get PDF
    We present MOND (Modified Newtonian Dynamics) fits to 15 rotation curves of LSB galaxies. Good fits are readily found, although for a few galaxies minor adjustments to the inclination are needed. Reasonable values for the stellar mass-to-light ratios are found, as well as an approximately constant value for the total (gas and stars) mass-to-light ratio. We show that the LSB galaxies investigated here lie on the one, unique Tully-Fisher relation, as predicted by MOND. The scatter on the Tully-Fisher relation can be completely explained by the observed scatter in the total mass-to-light ratio. We address the question of whether MOND can fit any arbitrary rotation curve by constructing a plausible fake model galaxy. While MOND is unable to fit this hypothetical galaxy, a normal dark halo fit is readily found, showing that dark matter fits are much less selective in producing fits. The good fits to rotation curves of LSB galaxies support MOND, especially as these are galaxies with large mass discrepancies deep in the MOND regime.Comment: Accepted for publication in Astrophysical Journal 14 page

    The dark and baryonic matter content of low surface brightness disk galaxies

    Get PDF
    We present mass models of a sample of 19 low surface brightness (LSB) galaxies and compare the properties of their constituent mass components with those of a sample of high surface brightness (HSB) galaxies.We find that LSB galaxies are dark matter dominated. Their halo parameters are only slightly affected by assumptions on stellar mass-to-light ratios. Comparing LSB and HSB galaxies we find that mass models derived using the maximum disk hypothesis result in the disks of LSB galaxies having systematically higher stellar mass-to-light ratios than HSB galaxies of similar rotation velocity. This is inconsistent with all other available evidence on the evolution of LSB galaxies. We argue therefore that the maximum disk hypothesis does not provide a representative description of the LSB galaxies and their evolution. Mass models with stellar mass-to-light ratios determined by the colors and stellar velocity dispersions of galactic disks imply that LSB galaxies have dark matter halos that are more extended and less dense than those of HSB galaxies. Surface brightness is thus related to the halo properties. LSB galaxies are slowly evolving, low density and dark matter dominated galaxies.Comment: 23 pages Latex, 12 postscript figures, uses mn.sty. Accepted for publication in MNRA

    Mass Density Profiles of LSB Galaxies

    Get PDF
    We derive the mass density profiles of dark matter halos that are implied by high spatial resolution rotation curves of low surface brightness galaxies. We find that at small radii, the mass density distribution is dominated by a nearly constant density core with a core radius of a few kpc. For rho(r) ~ r^a, the distribution of inner slopes a is strongly peaked around a = -0.2. This is significantly shallower than the cuspy a < -1 halos found in CDM simulations. While the observed distribution of alpha does have a tail towards such extreme values, the derived value of alpha is found to depend on the spatial resolution of the rotation curves: a ~ -1 is found only for the least well resolved galaxies. Even for these galaxies, our data are also consistent with constant density cores (a = 0) of modest (~ 1 kpc) core radius, which can give the illusion of steep cusps when insufficiently resolved. Consequently, there is no clear evidence for a cuspy halo in any of the low surface brightness galaxies observed.Comment: To be published in ApJ Letters. 6 pages. Uses aastex and emulateapj5.sty Typo in Eq 1 fixe

    Star Formation and Tidal Encounters with the Low Surface Brightness Galaxy UGC 12695 and Companions

    Full text link
    We present VLA H I observations of the low surface brightness galaxy UGC 12695 and its two companions, UGC 12687 and a newly discovered dwarf galaxy 2333+1234. UGC 12695 shows solid body rotation but has a very lopsided morphology of the H I disk, with the majority of the H I lying in the southern arm of the galaxy. The H I column density distribution of this very blue, LSB galaxy coincides in detail with its light distribution. Comparing the H I column density of UGC 12695 with the empirical (but not well understood) value of Sigma_c = 10E21 atoms/cm^2 found in, i.e., Skillman's 1986 paper shows the star formation to be a local affair, occurring only in those regions where the column density is above this star formation threshold. The low surface brightness nature of this galaxy could thus be attributed to an insufficient gas surface density, inhibiting star formation on a more global scale. Significantly, though, the Toomre criterion places a much lower critical density on the galaxy (+/-10E20 atoms/cm^2), which is shown by the galaxy's low SFR to not be applicable. Within a projected distance of 300kpc/30kms of UGC 12695 lie two companion galaxies - UGC 12687, a high surface brightness barred spiral galaxy, and 2333+1234, a dwarf galaxy discovered during this investigation. The close proximity of the three galaxies, combined with UGC 12695's extremely blue color and regions of localized starburst and UGC 12687's UV excess bring to mind mutually induced star formation through tidal activity.Comment: 14 pages, 8 figures (2 color), To be published in A.J., May 2000

    The Stellar Populations of Low Surface Brightness Galaxies

    Get PDF
    Near-infrared (NIR) K' images of a sample of five low surface brightness disc galaxies (LSBGs) were combined with optical data, with the aim of constraining their star formation histories. Both red and blue LSBGs were imaged to enable comparison of their stellar populations. For both types of galaxy strong colour gradients were found, consistent with mean stellar age gradients. Very low stellar metallicities were ruled out on the basis of metallicity-sensitive optical-NIR colours. These five galaxies suggest that red and blue LSBGs have very different star formation histories and represent two independent routes to low B band surface brightness. Blue LSBGs are well described by models with low, roughly constant star formation rates, whereas red LSBGs are better described by a `faded disc' scenario.Comment: 5 pages LaTeX; 2 embedded figures; MNRAS Letters, Accepte

    A search for Low Surface Brightness galaxies in the near-infrared I. Selection of the sample

    Get PDF
    A sample of about 3,800 Low Surface Brightness (LSB) galaxies was selected using the all-sky near-infrared (J, H and K_s-band) 2MASS survey. The selected objects have a mean central surface brightness within a 5 arcsec radius around their centre fainter than 18 mag/sq.arcsec in the K_s band, making them the lowest surface brightness galaxies detected by 2MASS. A description is given of the relevant properties of the 2MASS survey and the LSB galaxy selection procedure, as well as of basic photometric properties of the selected objects. The latter properties are compared to those of other samples of galaxies, of both LSBs and `classical' high surface brightness (HSB) objects, which were selected in the optical. The 2MASS LSBs have a (B_T_c)-(K_T) colour which is on average 0.9 mag bluer than that of HSBs from the NGC. The 2MASS sample does not appear to contain a significant population of red objects.Comment: accepted for publication in Astronomy and Astrophysics on 24/2/2003; 62 page

    Two Dimensional Velocity Fields of Low Surface Brightness Galaxies

    Get PDF
    We present high resolution two dimensional velocity fields from integral field spectroscopy along with derived rotation curves for nine low surface brightness galaxies. This is a positive step forward in terms of both data quality and number of objects studied. We fit NFW and pseudo-isothermal halo models to the observations. We find that the pseudo-isothermal halo better represents the data in most cases than the NFW halo, as the resulting concentrations are lower than would be expected for LCDM.Comment: 2 pages, 1 figure, to appear in the XXIst IAP Colloquium "Mass Profiles and Shapes of Cosmological Structures", Paris 4-9 July 2005, (Eds.) G. Mamon, F. Combes, C. Deffayet, B. Fort, (EDP Sciences

    Local Group dSph radio survey with ATCA (III): Constraints on Particle Dark Matter

    Full text link
    We performed a deep search for radio synchrotron emissions induced by weakly interacting massive particles (WIMPs) annihilation or decay in six dwarf spheroidal (dSph) galaxies of the Local Group. Observations were conducted with the Australia Telescope Compact Array (ATCA) at 16 cm wavelength, with an rms sensitivity better than 0.05 mJy/beam in each field. In this work, we first discuss the uncertainties associated with the modeling of the expected signal, such as the shape of the dark matter (DM) profile and the dSph magnetic properties. We then investigate the possibility that point-sources detected in the proximity of the dSph optical center might be due to the emission from a DM cuspy profile. No evidence for an extended emission over a size of few arcmin (which is the DM halo size) has been detected. We present the associated bounds on the WIMP parameter space for different annihilation/decay final states and for different astrophysical assumptions. If the confinement of electrons and positrons in the dSph is such that the majority of their power is radiated within the dSph region, we obtain constraints on the WIMP annihilation rate which are well below the thermal value for masses up to few TeV. On the other hand, for conservative assumptions on the dSph magnetic properties, the bounds can be dramatically relaxed. We show however that, within the next 10 years and regardless of the astrophysical assumptions, it will be possible to progressively close in on the full parameter space of WIMPs by searching for radio signals in dSphs with SKA and its precursors.Comment: 17 pages, 6 figure panels. Companion papers: arXiv:1407.5479 and arXiv:1407.5482. v3: minor revision, matches published versio

    Testing the Hypothesis of Modified Dynamics with Low Surface Brightness Galaxies and Other Evidence

    Get PDF
    The rotation curves of low surface brightness galaxies provide a unique data set with which to test alternative theories of gravitation over a large dynamic range in size, mass, surface density, and acceleration. Many clearly fail, including any in which the mass discrepancy appears at a particular length-scale. One hypothesis, MOND [Milgrom 1983, ApJ, 270, 371], is consistent with the data. Indeed, it accurately predicts the observed behavior. We find no evidence on any scale which clearly contradicts MOND, and a good deal which supports it.Comment: Accepted for publication in the Astrophysical Journal. 35 pages AAStex + 9 figures. This result surprised the bejeepers out of us, to
    • …
    corecore