8,597 research outputs found

    Probing the exchange field of a quantum-dot spin valve by a superconducting lead

    Full text link
    Electrons in a quantum-dot spin valve, consisting of a single-level quantum dot coupled to two ferromagnetic leads with magnetizations pointing in arbitrary directions, experience an exchange field that is induced on the dot by the interplay of Coulomb interaction and quantum fluctuations. We show that a third, superconducting lead with large superconducting gap attached to the dot probes this exchange field very sensitively. In particular, we find striking signatures of the exchange field in the symmetric component of the supercurrent with respect to the bias voltage applied between the ferromagnets already for small values of the ferromagnets' spin polarization.Comment: published version, 10 pages, 7 figure

    Collective Molecular Dynamics in Proteins and Membranes

    Get PDF
    The understanding of dynamics and functioning of biological membranes and in particular of membrane embedded proteins is one of the most fundamental problems and challenges in modern biology and biophysics. In particular the impact of membrane composition and properties and of structure and dynamics of the surrounding hydration water on protein function is an upcoming hot topic, which can be addressed by modern experimental and computational techniques. Correlated molecular motions might play a crucial role for the understanding of, for instance, transport processes and elastic properties, and might be relevant for protein function. Experimentally that involves determining dispersion relations for the different molecular components, i.e., the length scale dependent excitation frequencies and relaxation rates. Only very few experimental techniques can access dynamical properties in biological materials on the nanometer scale, and resolve dynamics of lipid molecules, hydration water molecules and proteins and the interaction between them. In this context, inelastic neutron scattering turned out to be a very powerful tool to study dynamics and interactions in biomolecular materials up to relevant nanosecond time scales and down to the nanometer length scale. We review and discuss inelastic neutron scattering experiments to study membrane elasticity and protein-protein interactions of membrane embedded proteins

    Influence of non-local exchange on RKKY interactions in III-V diluted magnetic semiconductors

    Full text link
    The RKKY interaction between substitutional Mn local moments in GaAs is both spin-direction-dependent and spatially anisotropic. In this Letter we address the strength of these anisotropies using a semi-phenomenological tight-binding model which treats the hybridization between Mn d-orbitals and As p-orbitals perturbatively and accounts realistically for the non-local exchange interaction between their spins. We show that exchange non-locality, valence-band spin-orbit coupling, and band-structure anisotropy all play a role in determining the strength of both effects. We use these results to estimate the degree of ground-state magnetization suppression due to frustrating interactions between randomly located Mn ions.Comment: 4 pages RevTeX, 2 figures included, v2: replacement because of font proble

    Income and distance elasticities of values of travel time savings: New Swiss results

    Get PDF
    This paper presents the findings of a study looking into the valuation of travel time savings (VTTS) in Switzerland, across modes as well as across purpose groups. The study makes several departures from the usual practice in VTTS studies, with the main one being a direct representation of the income and distance elasticity of the VTTS measures. Here, important gains in model performance and significantly different results are obtained through this approach. Additionally, the analysis shows that the estimation of robust coefficients for congested car travel time is hampered by the low share of congested time in the overall travel time, and the use of an additional rate-of-congestion coefficient, in addition to a generic car travel time coefficient, is preferable. Finally, the analysis demonstrates that the population mean of the indicators calculated is quite different from the sample means and presents methods to calculate those, along with the associated variances. These variances are of great interest as they allow the generation of confidence intervals, which can be extremely useful in cost-benefit analyses

    Signatures of few-body resonances in finite volume

    Get PDF
    We study systems of bosons and fermions in finite periodic boxes and show how the existence and properties of few-body resonances can be extracted from studying the volume dependence of the calculated energy spectra. Using a plane-wave-based discrete variable representation to conveniently implement periodic boundary conditions, we establish that avoided level crossings occur in the spectra of up to four particles and can be linked to the existence of multi-body resonances. To benchmark our method we use two-body calculations, where resonance properties can be determined with other methods, as well as a three-boson model interaction known to generate a three-boson resonance state. Finding good agreement for these cases, we then predict three-body and four-body resonances for models using a shifted Gaussian potential. Our results establish few-body finite-volume calculations as a new tool to study few-body resonances. In particular, the approach can be used to study few-neutron systems, where such states have been conjectured to exist.Comment: 13 pages, 10 figures, 2 tables, published versio

    Deep ALMA imaging of the merger NGC1614 - Is CO tracing a massive inflow of non-starforming gas?

    Get PDF
    Observations of the molecular gas over scales of 0.5 to several kpc provide crucial information on how gas moves through galaxies, especially in mergers and interacting systems, where it ultimately reaches the galaxy center, accumulates, and feeds nuclear activity. Studying the processes involved in the gas transport is an important step forward to understand galaxy evolution. 12CO, 13CO and C18O1-0 high-sensitivity ALMA observations were used to assess properties of the large-scale molecular gas reservoir and its connection to the circumnuclear molecular ring in NGC1614. The role of excitation and abundances were studied in this context. Spatial distributions of the 12CO and 13CO emission show significant differences. 12CO traces the large-scale molecular gas reservoir, associated with a dust lane that harbors infalling gas. 13CO emission is - for the first time - detected in the large-scale dust lane. Its emission peaks between dust lane and circumnuclear molecular ring. A 12CO-to-13CO1-0 intensity ratio map shows high values in the ring region (~30) typical for the centers of luminous galaxy mergers and even more extreme values in the dust lane (>45). This drop in ratio is consistent with molecular gas in the dust lane being in a diffuse, unbound state while being funneled towards the nucleus. We find a high 16O-to-18O abundance ratio in the starburst region (>900), typical of quiescent disk gas - by now, the starburst is expected to have enriched the nuclear ISM in 18O relative to 16O. The massive inflow of gas may be partially responsible for the low 18O/16O abundance since it will dilute the starburst enrichment with unprocessed gas from greater radii. The 12CO-to-13CO abundance is consistent with this scenario. It suggests that the nucleus of NGC1614 is in a transient phase of evolution where starburst and nuclear growth are fuelled by returning gas from the minor merger event.Comment: 10 pages, 9 figures, accepted for publication in A&

    A strong converse for classical channel coding using entangled inputs

    Full text link
    A fully general strong converse for channel coding states that when the rate of sending classical information exceeds the capacity of a quantum channel, the probability of correctly decoding goes to zero exponentially in the number of channel uses, even when we allow code states which are entangled across several uses of the channel. Such a statement was previously only known for classical channels and the quantum identity channel. By relating the problem to the additivity of minimum output entropies, we show that a strong converse holds for a large class of channels, including all unital qubit channels, the d-dimensional depolarizing channel and the Werner-Holevo channel. This further justifies the interpretation of the classical capacity as a sharp threshold for information-transmission.Comment: 9 pages, revte
    • …
    corecore